Combinación de fármacos y nanooncología para mejorar el tratamiento del cáncer de mama: una revisión
DOI:
https://doi.org/10.33448/rsd-v10i4.14098Palabras clave:
Cáncer de mama; Quimioterapia; Nanomedicina; Nanotecnología.Resumen
La optimización del tratamiento de combinación de fármacos ha sido un área de interés durante un tiempo, desde el principio con la aparición del régimen POMP. La capacidad de mejorar las combinaciones de fármacos para el tratamiento del cáncer se enfrenta a la posibilidad de varias limitaciones, como la falta de especificidad de los fármacos, que genera efectos tóxicos sistémicos, y también la gran posibilidad de generar células tumorales resistentes a los fármacos. El desarrollo de la nanooncología ofrece avances en nuevas alternativas para el tratamiento del cáncer, especialmente el cáncer de mama. La estrategia de utilizar fármacos combinados en un nanoportador para el tratamiento del cáncer de mama ha demostrado ser bastante eficaz, teniendo en cuenta que el cáncer de mama ha mostrado desde hace mucho tiempo una buena respuesta con combinaciones terapéuticas. En este trabajo presentamos una revisión de algunos ejemplos de nanoformulaciones desarrolladas con la combinación de fármacos doxorrubicina y / o paclitaxel dirigidos al tratamiento del cáncer de mama. También las perspectivas de futuro de la nanotecnología en la combinación de fármacos.
Citas
Al-Lazikani, B., Banerji, U., & Workman, P. (2012). Combinatorial drug therapy for cancer in the post-genomic era. Nature Biotechnology, 30(7), 679–692.
Al-Mahayri, Z. N., Patrinos, G. P., & Ali, B. R. (2020). Toxicity and Pharmacogenomic Biomarkers in Breast Cancer Chemotherapy. Frontiers in Pharmacology, 11, 445.
Aulic, S., Marson, D., Laurini, E., Fermeglia, M., & Pricl, S. (2020). Breast cancer nanomedicine market update and other industrial perspectives of nanomedicine. In Nanomedicines for Breast Cancer Theranostics (pp. 371–404). Elsevier.
Barzaman, K., Karami, J., Zarei, Z., Hosseinzadeh, A., Kazemi, M. H., Moradi-Kalbolandi, S., Safari, E., & Farahmand, L. (2020). Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology, 84, 106535.
Beltrán-Gracia, E., López-Camacho, A., Higuera-Ciapara, I., Velázquez-Fernández, J. B., & Vallejo-Cardona, A. A. (2019). Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnology, 10(1), 11.
Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33(10), 2373–2387.
Bonadonna, G., Brusamolino, E., Valagussa, P., Rossi, A., Brugnatelli, L., Brambilla, C., De Lena, M., Tancini, G., Bajetta, E., Musumeci, R., & others. (1976). Combination chemotherapy as an adjuvant treatment in operable breast cancer. New England Journal of Medicine, 294(8), 405–410.
Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: an updated review. Pharmaceutics, 9(2), 12.
Cooper, R. G. (1969). Combination chemotherapy in hormone resistant breast cancer. Proceedings of the American Association for Cancer Research, 10(MAR), 15.
Correia, A., Silva, D., Correia, A., Vilanova, M., Gärtner, F., & Vale, N. (2018). Study of new therapeutic strategies to combat breast cancer using drug combinations. Biomolecules, 8(4), 175.
De Cicco, P., Catani, M. V., Gasperi, V., Sibilano, M., Quaglietta, M., & Savini, I. (2019). Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients, 11(7), 1514.
de Lima, L. I., Faria, R. S., Franco, M. S., Roque, M. C., Arruda Pacheco, T. J., Rodrigues, M. C., Muehlmann, L. A., Moya, S. E., Azevedo, R. B., de Oliveira, M. C., & others. (2020). Combined paclitaxel-doxorubicin liposomal results in positive prognosis with infiltrating lymphocytes in lung metastasis. Nanomedicine, 15(29), 2753–2770.
Devita Jr, V. T., Young, R. C., & Canellos, G. P. (1975). Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer, 35(1), 98–110.
Di, H., Wu, H., Gao, Y., Li, W., Zou, D., & Dong, C. (2016). Doxorubicin-and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy. Drug Development and Industrial Pharmacy, 42(12), 2038–2043.
Di Wu, M. S., Xue, H.-Y., & Wong, H.-L. (2017). Nanomedicine applications in the treatment of breast cancer: current state of the art. International Journal of Nanomedicine, 12, 5879.
Ding, Y., Su, S., Zhang, R., Shao, L., Zhang, Y., Wang, B., Li, Y., Chen, L., Yu, Q., Wu, Y., & others. (2017). Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials, 113, 243–252.
Esnaashari, S. S., Muhammadnejad, S., Amanpour, S., & Amani, A. (2020). A Combinational Approach Towards Treatment of Breast Cancer: an Analysis of Noscapine-Loaded Polymeric Nanoparticles and Doxorubicin. AAPS PharmSciTech, 21, 166.
Espinosa, P. P., & Espinosa, M. J. (2016). Experiences to chemotherapy among women with breast cancer. Int J Bio Sci Bio Technol, 8, 159–166.
Fabi, A., Ferretti, G., Malaguti, P., Gasparro, S., Nisticò, C., Arpino, G., Papaldo, P., Russillo, M., Catania, G., Schettini, F., & others. (2020). Nanoparticle albumin-bound paclitaxel/liposomal-encapsulated doxorubicin in HER2-negative metastatic breast cancer patients. Future Oncology, 0.
Falagan-Lotsch, P., Grzincic, E. M., & Murphy, C. J. (2017). New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: an assessment of active-targeting inorganic nanoplatforms. Bioconjugate Chemistry, 28(1), 135–152.
Fernandes, R. S., Silva, J. O., Seabra, H. A., Oliveira, M. S., Carregal, V. M., Vilela, J. M. C., Andrade, M. S., Townsend, D. M., Colletti, P. M., Leite, E. A., & others. (2018). $α$-Tocopherol succinate loaded nano-structed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo. Biomedicine & Pharmacotherapy, 103, 1348–1354.
Fisusi, F. A., & Akala, E. O. (2019). Drug Combinations in Breast Cancer Therapy. Pharmaceutical Nanotechnology, 7(1), 3–23.
Fraguas-Sánchez, A. I., Mart’in-Sabroso, C., Fernández-Carballido, A., & Torres-Suárez, A. I. (2019). Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemotherapy and Pharmacology, 1–18.
Franco, M. S., Roque, M. C., de Barros, A. L. B., de Oliveira Silva, J., Cassali, G. D., & Oliveira, M. C. (2019). Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomedicine & Pharmacotherapy, 109, 1728–1739.
Frei, E. (1985). Curative cancer chemotherapy. Cancer Research, 45(12 Part 1), 6523–6537.
FREI III, E., KARON, M., LEVIN, R. H., Freireich, E. J., TAYLOR, R. J., HANANIAN, J., SELAWRY, O., HOLLAND, J. F., HOOGSTRATEN, B., WOLMAN, I. J., & others. (1965). The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood, 26(5), 642–656.
Ganta, S., & Amiji, M. (2009). Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Molecular Pharmaceutics, 6(3), 928–939.
Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annual Review of Medicine, 53(1), 615–627.
Hu, C.-M. J., & Zhang, L. (2012). Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochemical Pharmacology, 83(8), 1104–1111.
Kostarelos, K. (2006). The emergence of nanomedicine: a field in the making.
Lan, Y., Sun, Y., Yang, T., Ma, X., Cao, M., Liu, L., Yu, S., Cao, A., & Liu, Y. (2019). Co-delivery of paclitaxel by a capsaicin prodrug micelle facilitating for combination therapy on breast cancer. Molecular Pharmaceutics, 16(8), 3430–3440.
Li, M., Luo, Z., & Zhao, Y. (2018). Self-assembled hybrid nanostructures: versatile multifunctional nanoplatforms for cancer diagnosis and therapy. Chemistry of Materials, 30(1), 25–53.
Li, X., Yuan, H., Wu, J., Li, J., Qu, X., Xu, W., & Tang, W. (2008). Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance. Current Medicinal Chemistry, 15(5), 470–476.
Li, Z., Tan, S., Li, S., Shen, Q., & Wang, K. (2017). Cancer drug delivery in the nano era: An overview and perspectives. Oncology Reports, 38(2), 611–624.
Liyanage, P. Y., Hettiarachchi, S. D., Zhou, Y., Ouhtit, A., Seven, E. S., Oztan, C. Y., Celik, E., & Leblanc, R. M. (2019). Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1871(2), 419–433.
Luo, L., Xu, F., Peng, H., Luo, Y., Tian, X., Battaglia, G., Zhang, H., Gong, Q., Gu, Z., & Luo, K. (2020). Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. Journal of Controlled Release, 318, 124–135.
Malhotra, V., & Perry, M. C. (2003). Classical chemotherapy: mechanisms, toxicities and the therapeutc window. Cancer Biology & Therapy, 2(sup1), 1–3.
Mignani, S., Bryszewska, M., Klajnert-Maculewicz, B., Zablocka, M., & Majoral, J.-P. (2015). Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules, 16(1), 1–27.
Misra, R., & Sahoo, S. K. (2011). Coformulation of doxorubicin and curcumin in poly (D, L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Molecular Pharmaceutics, 8(3), 852–866.
Nguyen, P. L., Gu, X., Lipsitz, S. R., Choueiri, T. K., Choi, W. W., Lei, Y., Hoffman, K. E., & Hu, J. C. (2011). Cost implications of the rapid adoption of newer technologies for treating prostate cancer. Journal of Clinical Oncology, 29(12), 1517.
Özdelikara, A., & Tan, M. (2017). The effect of reflexology on chemotherapy-induced nausea, vomiting, and fatigue in breast cancer patients. Asia-Pacific Journal of Oncology Nursing, 4(3), 241.
Palmer, A. C., & Sorger, P. K. (2017). Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell, 171(7), 1678–1691.
Pan, J., Mendes, L. P., Yao, M., Filipczak, N., Garai, S., Thakur, G. A., Sarisozen, C., & Torchilin, V. P. (2019). Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. European Journal of Pharmaceutics and Biopharmaceutics, 136, 18–28.
Patel, N. M., Nozaki, S., Shortle, N. H., Bhat-Nakshatri, P., Newton, T. R., Rice, S., Gelfanov, V., Boswell, S. H., Goulet, R. J., Sledge, G. W., & others. (2000). Paclitaxel sensitivity of breast cancer cells with constitutively active NF-$κ$B is enhanced by I$κ$B$α$ super-repressor and parthenolide. Oncogene, 19(36), 4159–4169.
Rajora, A. K., Ravishankar, D., Zhang, H., & Rosenholm, J. M. (2020). Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics, 12(6), 592.
Roque, M. C., Franco, M. S., Vilela, J. M. C., Andrade, M. S., de Barros, A. L. B., Leite, E. A., & Oliveira, M. C. (2019). Development of Long-Circulating and Fusogenic Liposomes Co-encapsulating Paclitaxel and Doxorubicin in Synergistic Ratio for the Treatment of Breast Cancer. Current Drug Delivery, 16(9), 829–838.
Shim, G., Kim, M.-G., Kim, D., Park, J. Y., & Oh, Y.-K. (2017). Nanoformulation-based sequential combination cancer therapy. Advanced Drug Delivery Reviews, 115, 57–81.
Society, U. K. R. (2004). Nanoscience and Nanotechnologies: Opportunities and Uncertainties. The Royal Society and The Royal Academy of Engineering London.
Song, M., Liang, Y., Li, K., Zhang, J., Zhang, N., Tian, B., & Han, J. (2019). Hyaluronic acid modified liposomes for targeted delivery of doxorubicin and paclitaxel to CD44 overexpressing tumor cells with improved dual-drugs synergistic effect. Journal of Drug Delivery Science and Technology, 53, 101179.
Swain, S. M., Baselga, J., Kim, S.-B., Ro, J., Semiglazov, V., Campone, M., Ciruelos, E., Ferrero, J.-M., Schneeweiss, A., Heeson, S., & others. (2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. New England Journal of Medicine, 372(8), 724–734.
Tang, H., Chen, J., Wang, L., Li, Q., Yang, Y., Lv, Z., Bao, H., Li, Y., Luan, X., Li, Y., & others. (2020). Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. International Journal of Pharmaceutics, 573, 118806.
Tran, P., Lee, S.-E., Kim, D.-H., Pyo, Y.-C., & Park, J.-S. (2020). Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. Journal of Pharmaceutical Investigation, 50(3), 261–270.
Ventola, C. L. (2017). Progress in nanomedicine: approved and investigational nanodrugs. Pharmacy and Therapeutics, 42(12), 742.
Wolfram, J., & Ferrari, M. (2019). Clinical cancer nanomedicine. Nano Today, 25, 85–98.
Wu, D., Pusuluri, A., Vogus, D., Krishnan, V., Shields IV, C. W., Kim, J., Razmi, A., & Mitragotri, S. (2020). Design principles of drug combinations for chemotherapy. Journal of Controlled Release.
You, Y.-H., Lin, Y.-F., Nirosha, B., Chang, H.-T., & Huang, Y.-F. (2019). Polydopamine-coated gold nanostar for combined antitumor and antiangiogenic therapy in multidrug-resistant breast cancer. Nanotheranostics, 3(3), 266.
Zeinali, M., Abbaspour-Ravasjani, S., Ghorbani, M., Babazadeh, A., Soltanfam, T., Santos, A. C., Hamishehkar, H., & Hamblin, M. R. (2020). Nanovehicles for co-delivery of anticancer agents. Drug Discovery Today.
Zhang, J., Zhang, P., Zou, Q., Li, X., Fu, J., Luo, Y., Liang, X., & Jin, Y. (2018). Co-delivery of gemcitabine and paclitaxel in CRGD-modified long circulating nanoparticles with asymmetric lipid layers for breast cancer treatment. Molecules, 23(11), 2906.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Raquel Santos Faria; Danielle Galdino de Souza; Thyago José Arruda Pacheco; Franciéle de Matos da Silva; Victor Carlos Mello da Silva; Luiza Ianny de Lima
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.