Combinação de drogas e nanooncologia para melhoria no tratamento do câncer de mama: uma revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v10i4.14098

Palavras-chave:

Câncer de mama; Quimioterapia; Nanomedicina; Nanotecnologia.

Resumo

A otimização do tratamento de combinação de medicamentos tem sido uma área de interesse há algum tempo, desde o início com o surgimento do regime POMP. A capacidade de melhorar as combinações de medicamentos para o tratamento do câncer esbarra na possibilidade de várias limitações, como a falta de especificidade dos medicamentos, gerando efeitos tóxicos sistêmicos, e também a grande possibilidade de gerar células tumorais resistentes aos medicamentos. O desenvolvimento da nanooncologia oferece avanços em novas alternativas para o tratamento do câncer, principalmente do câncer de mama. A estratégia de usar medicamentos combinados em um nanocarreador para o tratamento do câncer de mama tem se mostrado bastante eficaz, levando-se em consideração que o câncer de mama há muito apresenta uma boa resposta com combinações terapêuticas. Neste trabalho, apresentamos uma revisão de alguns exemplos de nanoformulações desenvolvidas com a combinação dos fármacos doxorrubicina e / ou paclitaxel voltados para o tratamento do câncer de mama. Também as perspectivas futuras da nanotecnologia na combinação de medicamentos.

Referências

Al-Lazikani, B., Banerji, U., & Workman, P. (2012). Combinatorial drug therapy for cancer in the post-genomic era. Nature Biotechnology, 30(7), 679–692.

Al-Mahayri, Z. N., Patrinos, G. P., & Ali, B. R. (2020). Toxicity and Pharmacogenomic Biomarkers in Breast Cancer Chemotherapy. Frontiers in Pharmacology, 11, 445.

Aulic, S., Marson, D., Laurini, E., Fermeglia, M., & Pricl, S. (2020). Breast cancer nanomedicine market update and other industrial perspectives of nanomedicine. In Nanomedicines for Breast Cancer Theranostics (pp. 371–404). Elsevier.

Barzaman, K., Karami, J., Zarei, Z., Hosseinzadeh, A., Kazemi, M. H., Moradi-Kalbolandi, S., Safari, E., & Farahmand, L. (2020). Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology, 84, 106535.

Beltrán-Gracia, E., López-Camacho, A., Higuera-Ciapara, I., Velázquez-Fernández, J. B., & Vallejo-Cardona, A. A. (2019). Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnology, 10(1), 11.

Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33(10), 2373–2387.

Bonadonna, G., Brusamolino, E., Valagussa, P., Rossi, A., Brugnatelli, L., Brambilla, C., De Lena, M., Tancini, G., Bajetta, E., Musumeci, R., & others. (1976). Combination chemotherapy as an adjuvant treatment in operable breast cancer. New England Journal of Medicine, 294(8), 405–410.

Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: an updated review. Pharmaceutics, 9(2), 12.

Cooper, R. G. (1969). Combination chemotherapy in hormone resistant breast cancer. Proceedings of the American Association for Cancer Research, 10(MAR), 15.

Correia, A., Silva, D., Correia, A., Vilanova, M., Gärtner, F., & Vale, N. (2018). Study of new therapeutic strategies to combat breast cancer using drug combinations. Biomolecules, 8(4), 175.

De Cicco, P., Catani, M. V., Gasperi, V., Sibilano, M., Quaglietta, M., & Savini, I. (2019). Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients, 11(7), 1514.

de Lima, L. I., Faria, R. S., Franco, M. S., Roque, M. C., Arruda Pacheco, T. J., Rodrigues, M. C., Muehlmann, L. A., Moya, S. E., Azevedo, R. B., de Oliveira, M. C., & others. (2020). Combined paclitaxel-doxorubicin liposomal results in positive prognosis with infiltrating lymphocytes in lung metastasis. Nanomedicine, 15(29), 2753–2770.

Devita Jr, V. T., Young, R. C., & Canellos, G. P. (1975). Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer, 35(1), 98–110.

Di, H., Wu, H., Gao, Y., Li, W., Zou, D., & Dong, C. (2016). Doxorubicin-and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy. Drug Development and Industrial Pharmacy, 42(12), 2038–2043.

Di Wu, M. S., Xue, H.-Y., & Wong, H.-L. (2017). Nanomedicine applications in the treatment of breast cancer: current state of the art. International Journal of Nanomedicine, 12, 5879.

Ding, Y., Su, S., Zhang, R., Shao, L., Zhang, Y., Wang, B., Li, Y., Chen, L., Yu, Q., Wu, Y., & others. (2017). Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials, 113, 243–252.

Esnaashari, S. S., Muhammadnejad, S., Amanpour, S., & Amani, A. (2020). A Combinational Approach Towards Treatment of Breast Cancer: an Analysis of Noscapine-Loaded Polymeric Nanoparticles and Doxorubicin. AAPS PharmSciTech, 21, 166.

Espinosa, P. P., & Espinosa, M. J. (2016). Experiences to chemotherapy among women with breast cancer. Int J Bio Sci Bio Technol, 8, 159–166.

Fabi, A., Ferretti, G., Malaguti, P., Gasparro, S., Nisticò, C., Arpino, G., Papaldo, P., Russillo, M., Catania, G., Schettini, F., & others. (2020). Nanoparticle albumin-bound paclitaxel/liposomal-encapsulated doxorubicin in HER2-negative metastatic breast cancer patients. Future Oncology, 0.

Falagan-Lotsch, P., Grzincic, E. M., & Murphy, C. J. (2017). New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: an assessment of active-targeting inorganic nanoplatforms. Bioconjugate Chemistry, 28(1), 135–152.

Fernandes, R. S., Silva, J. O., Seabra, H. A., Oliveira, M. S., Carregal, V. M., Vilela, J. M. C., Andrade, M. S., Townsend, D. M., Colletti, P. M., Leite, E. A., & others. (2018). $α$-Tocopherol succinate loaded nano-structed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo. Biomedicine & Pharmacotherapy, 103, 1348–1354.

Fisusi, F. A., & Akala, E. O. (2019). Drug Combinations in Breast Cancer Therapy. Pharmaceutical Nanotechnology, 7(1), 3–23.

Fraguas-Sánchez, A. I., Mart’in-Sabroso, C., Fernández-Carballido, A., & Torres-Suárez, A. I. (2019). Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemotherapy and Pharmacology, 1–18.

Franco, M. S., Roque, M. C., de Barros, A. L. B., de Oliveira Silva, J., Cassali, G. D., & Oliveira, M. C. (2019). Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomedicine & Pharmacotherapy, 109, 1728–1739.

Frei, E. (1985). Curative cancer chemotherapy. Cancer Research, 45(12 Part 1), 6523–6537.

FREI III, E., KARON, M., LEVIN, R. H., Freireich, E. J., TAYLOR, R. J., HANANIAN, J., SELAWRY, O., HOLLAND, J. F., HOOGSTRATEN, B., WOLMAN, I. J., & others. (1965). The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood, 26(5), 642–656.

Ganta, S., & Amiji, M. (2009). Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Molecular Pharmaceutics, 6(3), 928–939.

Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annual Review of Medicine, 53(1), 615–627.

Hu, C.-M. J., & Zhang, L. (2012). Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochemical Pharmacology, 83(8), 1104–1111.

Kostarelos, K. (2006). The emergence of nanomedicine: a field in the making.

Lan, Y., Sun, Y., Yang, T., Ma, X., Cao, M., Liu, L., Yu, S., Cao, A., & Liu, Y. (2019). Co-delivery of paclitaxel by a capsaicin prodrug micelle facilitating for combination therapy on breast cancer. Molecular Pharmaceutics, 16(8), 3430–3440.

Li, M., Luo, Z., & Zhao, Y. (2018). Self-assembled hybrid nanostructures: versatile multifunctional nanoplatforms for cancer diagnosis and therapy. Chemistry of Materials, 30(1), 25–53.

Li, X., Yuan, H., Wu, J., Li, J., Qu, X., Xu, W., & Tang, W. (2008). Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance. Current Medicinal Chemistry, 15(5), 470–476.

Li, Z., Tan, S., Li, S., Shen, Q., & Wang, K. (2017). Cancer drug delivery in the nano era: An overview and perspectives. Oncology Reports, 38(2), 611–624.

Liyanage, P. Y., Hettiarachchi, S. D., Zhou, Y., Ouhtit, A., Seven, E. S., Oztan, C. Y., Celik, E., & Leblanc, R. M. (2019). Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1871(2), 419–433.

Luo, L., Xu, F., Peng, H., Luo, Y., Tian, X., Battaglia, G., Zhang, H., Gong, Q., Gu, Z., & Luo, K. (2020). Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. Journal of Controlled Release, 318, 124–135.

Malhotra, V., & Perry, M. C. (2003). Classical chemotherapy: mechanisms, toxicities and the therapeutc window. Cancer Biology & Therapy, 2(sup1), 1–3.

Mignani, S., Bryszewska, M., Klajnert-Maculewicz, B., Zablocka, M., & Majoral, J.-P. (2015). Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules, 16(1), 1–27.

Misra, R., & Sahoo, S. K. (2011). Coformulation of doxorubicin and curcumin in poly (D, L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Molecular Pharmaceutics, 8(3), 852–866.

Nguyen, P. L., Gu, X., Lipsitz, S. R., Choueiri, T. K., Choi, W. W., Lei, Y., Hoffman, K. E., & Hu, J. C. (2011). Cost implications of the rapid adoption of newer technologies for treating prostate cancer. Journal of Clinical Oncology, 29(12), 1517.

Özdelikara, A., & Tan, M. (2017). The effect of reflexology on chemotherapy-induced nausea, vomiting, and fatigue in breast cancer patients. Asia-Pacific Journal of Oncology Nursing, 4(3), 241.

Palmer, A. C., & Sorger, P. K. (2017). Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell, 171(7), 1678–1691.

Pan, J., Mendes, L. P., Yao, M., Filipczak, N., Garai, S., Thakur, G. A., Sarisozen, C., & Torchilin, V. P. (2019). Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. European Journal of Pharmaceutics and Biopharmaceutics, 136, 18–28.

Patel, N. M., Nozaki, S., Shortle, N. H., Bhat-Nakshatri, P., Newton, T. R., Rice, S., Gelfanov, V., Boswell, S. H., Goulet, R. J., Sledge, G. W., & others. (2000). Paclitaxel sensitivity of breast cancer cells with constitutively active NF-$κ$B is enhanced by I$κ$B$α$ super-repressor and parthenolide. Oncogene, 19(36), 4159–4169.

Rajora, A. K., Ravishankar, D., Zhang, H., & Rosenholm, J. M. (2020). Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics, 12(6), 592.

Roque, M. C., Franco, M. S., Vilela, J. M. C., Andrade, M. S., de Barros, A. L. B., Leite, E. A., & Oliveira, M. C. (2019). Development of Long-Circulating and Fusogenic Liposomes Co-encapsulating Paclitaxel and Doxorubicin in Synergistic Ratio for the Treatment of Breast Cancer. Current Drug Delivery, 16(9), 829–838.

Shim, G., Kim, M.-G., Kim, D., Park, J. Y., & Oh, Y.-K. (2017). Nanoformulation-based sequential combination cancer therapy. Advanced Drug Delivery Reviews, 115, 57–81.

Society, U. K. R. (2004). Nanoscience and Nanotechnologies: Opportunities and Uncertainties. The Royal Society and The Royal Academy of Engineering London.

Song, M., Liang, Y., Li, K., Zhang, J., Zhang, N., Tian, B., & Han, J. (2019). Hyaluronic acid modified liposomes for targeted delivery of doxorubicin and paclitaxel to CD44 overexpressing tumor cells with improved dual-drugs synergistic effect. Journal of Drug Delivery Science and Technology, 53, 101179.

Swain, S. M., Baselga, J., Kim, S.-B., Ro, J., Semiglazov, V., Campone, M., Ciruelos, E., Ferrero, J.-M., Schneeweiss, A., Heeson, S., & others. (2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. New England Journal of Medicine, 372(8), 724–734.

Tang, H., Chen, J., Wang, L., Li, Q., Yang, Y., Lv, Z., Bao, H., Li, Y., Luan, X., Li, Y., & others. (2020). Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. International Journal of Pharmaceutics, 573, 118806.

Tran, P., Lee, S.-E., Kim, D.-H., Pyo, Y.-C., & Park, J.-S. (2020). Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. Journal of Pharmaceutical Investigation, 50(3), 261–270.

Ventola, C. L. (2017). Progress in nanomedicine: approved and investigational nanodrugs. Pharmacy and Therapeutics, 42(12), 742.

Wolfram, J., & Ferrari, M. (2019). Clinical cancer nanomedicine. Nano Today, 25, 85–98.

Wu, D., Pusuluri, A., Vogus, D., Krishnan, V., Shields IV, C. W., Kim, J., Razmi, A., & Mitragotri, S. (2020). Design principles of drug combinations for chemotherapy. Journal of Controlled Release.

You, Y.-H., Lin, Y.-F., Nirosha, B., Chang, H.-T., & Huang, Y.-F. (2019). Polydopamine-coated gold nanostar for combined antitumor and antiangiogenic therapy in multidrug-resistant breast cancer. Nanotheranostics, 3(3), 266.

Zeinali, M., Abbaspour-Ravasjani, S., Ghorbani, M., Babazadeh, A., Soltanfam, T., Santos, A. C., Hamishehkar, H., & Hamblin, M. R. (2020). Nanovehicles for co-delivery of anticancer agents. Drug Discovery Today.

Zhang, J., Zhang, P., Zou, Q., Li, X., Fu, J., Luo, Y., Liang, X., & Jin, Y. (2018). Co-delivery of gemcitabine and paclitaxel in CRGD-modified long circulating nanoparticles with asymmetric lipid layers for breast cancer treatment. Molecules, 23(11), 2906.

Downloads

Publicado

16/04/2021

Como Citar

FARIA, R. S.; SOUZA, D. G. de; PACHECO, T. J. A.; SILVA, F. de M. da; SILVA, V. C. M. da .; LIMA, L. I. de . Combinação de drogas e nanooncologia para melhoria no tratamento do câncer de mama: uma revisão. Research, Society and Development, [S. l.], v. 10, n. 4, p. e40710414098, 2021. DOI: 10.33448/rsd-v10i4.14098. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14098. Acesso em: 8 jan. 2025.

Edição

Seção

Artigos de Revisão