Eixo intestino-cérebro e modulação imunoneuroendócrina em doenças neurológicas e psiquiátricas: Uma revisão sistemática

Autores

DOI:

https://doi.org/10.33448/rsd-v10i4.14185

Palavras-chave:

Microbioma Gastrointestinal; Resposta Imune Ativa; Transtornos Mentais; Sistemas Neurossecretores; Doenças do sistema nervoso.

Resumo

O presente estudo teve como objetivo explorar a influência do eixo cérebro-intestino na modulação neuroendócrina e imunológica em distúrbios neurológicos e psiquiátricos. Esta revisão sistemática seguiu as diretrizes de Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA), e as pesquisas foram realizadas nas bases de dados eletrônicas PubMed e SciELO usando combinações dos descritores Gastrointestinal Microbiome, Neurosecretory Systems, Immune Response, Nervous System Diseases e Mental Disorders. A partir dos 144 estudos gerados pelo cruzamento dos descritores, 32 foram excluídos por estarem duplicados nas bases de dados, 13 por não estarem relacionados aos objetivos da revisão e outros 29 por não atenderem aos critérios de elegibilidade selecionados. Portanto, 70 estudos foram incluídos na presente revisão. A comunicação entre o trato gastrintestinal e o SNC ocorre através das vias neuronal, endócrina e imunológica por meio de a) produção de neurotransmissores, b) metabolismo do triptofano, c) modulação da atividade imunológica no SNC e SNE, d) produção de ácidos graxos de cadeia curta, e) a produção de hormônios intestinais e f) a produção de aminoácidos de cadeia ramificada.

Referências

Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., & Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), 1885-1895. 10.1016/j.psyneuen.2012.03.024

Akbaraly, T. N., Brunner, E. J., Ferrie, J. E., Marmot, M. G., Kivimaki, M., & Singh-Manoux A. (2009). Dietary pattern and depressive symptoms in middle age. Br J Psychiatry, 195(5), 408-413. 10.1192/bjp.bp.108.058925

Asano, Y., Hiramoto, T., Nishino, R., Aiba, Y., Kimura, T., Yoshihara, K., & Sudo, N. (2012). Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol - Gastrointest Liver Physiol, 303(11), G1288-G1295). 10.1152/ajpgi.00341.2012

Barouei, J., Moussavi, M., & Hodgson, D. M. (2012). Effect of maternal probiotic intervention on HPA Axis, immunity and gut microbiota in a rat model of irritable bowel syndrome. PLoS One, 7(10), e46051. 10.1371/journal.pone.0046051

Barrett, E., Ross, R. P., O’Toole, P. W., Fitzgerald, G. F, & Stanton C. (2012). γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol, 113(2), 411-417. 10.1111/j.1365-2672.2012.05344.x

Blachier, F., Mariotti, F., Huneau, J. F., & Tomé, D. (2007). Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids, 33(4), 547-562. 10.1007/s00726-006-0477-9

Belkaid, Y., & Hand, T. W. (2014) Role of the microbiota in immunity and inflammation. Cell, 157(1), 121-157. 10.1016/j.cell.2014.03.011

Berer, K., Gerdes, L. A., Cekanaviciute E., Jia, X., Xiao, L., Xia, Z., & Wekerle, H. (2017). Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A, 114(40), 10719-10724. 10.1073/pnas.1711233114

Boem, F., & Amedei, A. (2019). Healthy axis: Towards an integrated view of the gut-brain health. World J Gastroenterol, 25(19), 3838-3841. 10.3748/wjg.v25.i29.3838

Bohórquez, D. V., Shahid, R. A., Erdmann, A., Kreger, A. M., Wang, Y., Calakos, N., & Liddle, R. A. (2015). Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest, 125(2), 782-786. 10.1172/JCI78361

Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett, 626, 56-63. 10.1016/j.neulet.2016.02.009

Bravo, J. A., Forsythe P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A, 108(38), 16050-16055. 10.1073/pnas.1102999108

Brosnan, J. T., & Brosnan, M. E. (2006). Branched-chain amino acids: Enzyme and substrate regulation. Journal of Nutrition, 136(1), 207S-211S. 10.1093/jn/136.1.207s

Chen, J., Chia, N., Kalari, K. R., Yao, J. Z., Novotna, M., Soldan, M. M. P., Luckey, D. H., & Mangalam, A, K. (2016). Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep, 6, 28484. 10.1038/srep28484

Cho, I., & Blaser, M. J. (2012). The human microbiome: At the interface of health and disease. Nat Rev Genet, 13, 260-270. 10.1038/nrg3182

Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., & Cryan, J. F. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 18, 666-673. 10.1038/mp.2012.77

Cryan, J. F., & O’Mahony, S. M. (2011). The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol Motil, 23(3), 187-192. 10.1111/j.1365-2982.2010.01664.x

Cummings, J., Rombeau, J., & Sakata, T. (2004). Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge University Press. Editor: John H. Cummings.

Dai, Z. L., Wu, G., & Zhu, W. Y. (2011). Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front Biosci, 16, 1768-1786. 10.2741/3820

Davey, K. J., Cotter, P. D., O’Sullivan, O., Crispie, F., Dinan, T. G., Cryan, J. F., & O'Mahony. (2013). Antipsychotics and the gut microbiome: Olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry, 3, e309. 10.1038/tp.2013.83

De Angelis, M., Francavilla, R., Piccolo, M., De Giacomo, A., & Gobbetti, M. (2015). Autism spectrum disorders and intestinal microbiota. Gut Microbes, 6(3), 207-213. 10.1080/19490976.2015.1035855

DeCastro, M., Nankova, B. B., Shah, P., Patel, P., Mally, P. V., Mishra, R., & La Gamma, E. F. (2005). Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Mol Brain Res, 142(1), 28-38. 10.1016/j.molbrainres.2005.09.002

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., & Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A, 107(33), 14692-14696. 10.1073/pnas.1005963107

Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., & Dinan, T. G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res, 43(2), 164-174. 10.1016/j.jpsychires.2008.03.009

Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J. F., & Dinan, T. G. (2010). Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience, 170(4), 1179-1188. 10.1016/j.neuroscience.2010.08.005

Dickerson, F., Adamos, M., Katsafanas, E., Khushalani, S., Origoni, A., Savage, C., & Yolken, R. (2017). The association between immune markers and recent suicide attempts in patients with serious mental illness: A pilot study. Psychiatry Res, 255, 8-12. 10.1016/j.psychres.2017.05.005

Dickerson, F., Adamos, M., Katsafanas, E., Khushalani, S., Origoni, A., Savage, C., & Yolken, R. H. (2018). Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: A randomized controlled trial. Bipolar Disord, 20(7), 614-621. 10.1111/bdi.12652

Dinan, T. G., Stanton, C., & Cryan, J. F. (2013). Psychobiotics: A novel class of psychotropic. Biol Psychiatry, 74(10), 720-726. 10.1016/j.biopsych.2013.05.001

Ding, H. T., Taur ,Y., & Walkup, J. T. (2016). Gut Microbiota and Autism: Key Concepts and Findings. J Autism Dev Disord, 47, 480-489. 10.1007/s10803-016-2960-9

Duerkop, B. A., Vaishnava, S., & Hooper, L. V. (2009). Immune Responses to the Microbiota at the Intestinal Mucosal Surface. Immunity, 31(3), 368-376. 10.1016/j.immuni.2009.08.009

Elinav, E., Strowig, T., Kau, A. L., Henao-Mejia, J., Thaiss, C. A., Booth, C. J. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 145(5), 745-757. 10.1016/j.cell.2011.04.022

Erny, D., De Angelis, A. L. H., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 18, 965-977. 10.1038/nn.4030

Evans, S. J., Bassis, C. M., Hein, R., Assari, S., Flowers, S. A., Kelly, M. B., & Mclnnis, M. G. (2017). The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res, 87, 23-29. 10.1016/j.jpsychires.2016.12.007

Fattorusso, A., Di Genova, L., Dell’isola, G. B., Mencaroni, E., & Esposito, S. (2019). Autism spectrum disorders and the gut microbiota. Nutrients, 11(3), 521. 10.3390/nu11030521

Fernstrom, J. D. (2005). Branched-chain amino acids and brain function. Journal of Nutrition, 135(6), 1539S-1546S. 10.1093/jn/135.6.1539s

Gómez-Eguílaz, M., Ramón-Trapero, J. L., Pérez-Martínez, L., & Blanco, J. R. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: A pilot study. Benef Microbes, 9(6), 875-881. 10.3920/BM2018.0018

Hasegawa, S., Goto, S., Tsuji, H., Okuno, T., Asahara, T., Nomoto, K., & Hirayama, M. (2015). Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One, 10(11), e0142164). 10.1371/journal.pone.0142164

He, Z., Cui, B. T., Zhang, T., Li, P., Long, C.-Y., Ji, G.-Z., & Zhang, F.-M. (2017). Fecal microbiota transplantation cured epilepsy in a case with Crohn’s Disease: The first report. World J Gastroenterol, 23(19), 3565-3568. 10.3748/wjg.v23.i19.3565

Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., & Mazmanian, S. K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451-1463. 10.1016/j.cell.2013.11.024

Huuskonen, J., Suuronen, T., Nuutinen, T., Kyrylenko, S., & Salminen, A. (2004). Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol, 141(5), 874-880. 10.1038/sj.bjp.0705682

Inoue, R., Sakaue, Y., Sawai, C., Sawai, T., Ozeki, M., Romero-Pérez, G. A., & Tsukahara, T. (2016). A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Biosci Biotechnol Biochem, 80(12). 10.1080/09168451.2016.1222267

Jangi, S., Gandhi, R., Cox, L. M., Li, N., Glehn, F. V., Yan, R., & Patel, B. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nat Commun, 7(12015). 10.1038/ncomms12015

Jordal, P. B., Dueholm, M. S., Larsen, P., Petersen, S. V., Enghild, J. J., Christiansen, G., Hojurup, P., & Otzen, D. E. (2009). Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. Appl Environ Microbiol, 75(12), 4101-4110. 10.1128/AEM.02107-08

Kekuda, R., Manoharan, P., Baseler, W., & Sundaram, U. (2013). Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line. Dig Dis Sci, 58, 660-667. 10.1007/s10620-012-2407-x

Keshavarzian, A., Green, S. J., Engen, P. A., Voigt, R. M., Naqib, A., Forsyth, C. B., & Shannon, K. M. (2015). Colonic bacterial composition in Parkinson’s disease. Mov Disord, 30(10), 1351-1360. 10.1002/mds.26307

Kidd, M., Gustafsson, B. I., Drozdov, I., & Modlin, I. M. (2009). IL1β- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn’s disease. Neurogastroenterol Motil, 21(4), 439-450. 10.1111/j.1365-2982.2008.01210.x

Landgrave-Gómez, J., Mercado-Gómez, O., & Guevara-Guzmán, R. (2015). Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci, 9(58), 1-11. 10.3389/fncel.2015.00058

La Rosa, F., Saresella, M., Marventano, I., Piancone, F., Ripamonte, E., Al-Daghri, N., Bazzini, C., & Clerici, M. (2019). Stavudine Reduces NLRP3 Inflammasome Activation and Modulates Amyloid-β Autophagy. J Alzheimers Dis, 72(2), 401-412. 10.3233/JAD-181259

Larraufie, P., Doré, J., Lapaque, N., & Blottière, H. M. (2017). TLR ligands and butyrate increase Pyy expression through two distinct but inter-regulated pathways. Cell Microbiol, 19(2), e12648. 10.1111/cmi.12648

Larsen, P., Nielsen, J. L., Otzen, D., & Nielsen, P. H. (2008). Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol. 10.1128/AEM.02274-07

Leblhuber, F., Steiner, K., Schuetz, B., Fuchs, D., & Gostner, J. M. (2018). Probiotic supplementation in patients with Alzheimer’s dementia - An explorative intervention study. Curr Alzheimer Res, 15(12), 1106-1113. 10.2174/1389200219666180813144834

Li ,Q., Han, Y., Dy, A. B. C., Hager-Man, R. J., & Hager-man, R. J. (2017). The gut microbiota and autism spectrum disorders. Front Cell Neurosci, 11(120), 1-14. 10.3389/fncel.2017.00120

Liu, X., Cao, S., & Zhang, X. (2015). Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet. J Agric Food Chem, 63(36), 7885-7895. 10.1021/acs.jafc.5b02404

Macfarlane, G. T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int, 95(1), 50-60. 10.5740/jaoacint.SGE_Macfarlane

Maes, M., Kubera, M., & Leunis, J. C. (2008). The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett, 29(1), 117-124.

Mawe, G. M., & Hoffman, J. M. (2013). Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol, 10, 473-486. 10.1038/nrgastro.2013.105

Matsumoto, M., Kibe, R., Ooga, T., Aiba, Y., Sakawi, E., Koga, Y., & Benno, Y. (2013). Cerebral low-molecular metabolites influenced by intestinal microbiota: A pilot study. Front Syst Neurosci, 7(9), 1-19. 10.3389/fnsys.2013.00009

Messaoudi, M., Lalonde, R., Violle, N. Javelot, H., Desor, D., Nejdi, A., & Cazaubiel, J.-M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr, 105(5), 755-764. 10.1017/S0007114510004319

Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T., Chihara, N., & Yamamura, T. (2015). Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One, 10(9), e0137429. 10.1371/journal.pone.0137429

Morowitz, M. J., Carlisle E. M., & Alverdy, J. C. (2011). Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am, 91(4), 771-785. 10.1016/j.suc.2011.05.001

Mouihate, A., Galic, M. A., Ellis, S. L., Spencer, S. J., Tsutsui S., & Pittman, Q. J. (2010). Early life activation of Toll-like Receptor 4 reprograms neural anti-inflammatory pathways. J Neurosci, 30(23), 7975-7983. 10.1523/JNEUROSCI.6078-09.2010

Nankova, B. B., Agarwal, R., MacFabe, D. F, & La Gamma E. F. (2014). Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells - Possible relevance to autism spectrum disorders. PLoS One, 9(8), e103740. 10.1371/journal.pone.0103740

Navarro, F., Liu, Y., & Rhoads, J. M. (2016). Can probiotics benefit children with autism spectrum disorders? World J Gastroenterol, 22(46), 10093-10102. 10.3748/wjg.v22.i46.10093

Nguyen, T. T., Kosciolek, T., Maldonado, Y., Daly, R. E., Martin, A. S., McDonald, D., & Jeste, D. V. (2019). Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res, 204, 23-29. 10.1016/j.schres.2018.09.014

Nishino, R., Mikami, K., Takahashi, H., Tomonaga, S., Furuse, M., Hiramoto, T., & Sudo, N. (2013). Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil, 25(6), 521-e371. 10.1111/nmo.12110

Ohland, C. L., Kish, L., Bell, H., Thiesen, A., Hotte, N., Pankiv, E., & Madsen, K. L. (2013). Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology, 38(9), 1738-1747. 10.1016/j.psyneuen.2013.02.008

Okubo, R., Koga, M., Katsumata, N., Odamaki, T., Matsuyama, S., Oka, M., & Matsuoka, Y. Y. (2019). Effect of Bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. J Affect Disord, 245, 377-385. 10.1016/j.jad.2018.11.011

Pierantozzi, M., Pietroiusti, A., Brusa, L., Galati, S., & Stefani, A., Lunardi,...Galante, A. (2006). Helicobacter pylori eradication and L-dopa absorption in patients with PD and motor fluctuations. Neurology, 66(12), 1824-1829. 10.1212/01.wnl.0000221672.01272.ba

Peng, A., Qiu, X., Lai, W., Li, W., Zhang, L., Zhu, X., & Chen, L. 2018. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res, 147, 102-107. 10.1016/j.eplepsyres.2018.09.013

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

PRISMA (2015). Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiologia e Serviços de Saúde, 24(2), 335-342. Recuperado em 30 de março de 2021, de http://scielo.iec.gov.br/scielo.php?script=sci_arttext&pid=S1679-49742015000200017&lng=pt&tlng=pt.

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., & Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59-65. 10.1038/nature08821

Scheperjans, F., Aho, V., Pereira, P. A. B., Koskinen, K., Paulin, L., Pekkonen, E., & Auvinen, P. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord, 30(3), 350-358. 10.1002/mds.26069

Srikantha, P., & Hasan Mohajeri M. (2019). The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int J Mol Sci, 20(9), 2115. 10.3390/ijms20092115

Stilling, R. M., van de Wouw, M., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2016). The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int, 99, 99-110. 10.1016/j.neuint.2016.06.011

Tankou, S. K., Regev, K., Healy, B. C., Cox, L. M., Tjon, E., Kivisakk, P., & Weiner, H. L. (2018). Investigation of probiotics in multiple sclerosis. Mult Scler, 24(1), 58-63. 10.1177/1352458517737390

Tamtaji, O. R., Heidari-soureshjani, R., Mirhosseini, N., Kouchaki, E., Bahmani, F., Aghadavod, E., & Asemi, Z. (2019b). Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin Nutr, 38(6), 2569-2575. 10.1016/j.clnu.2018.11.034

Tamtaji, O. R., Taghizadeh, M., Kakhaki, R. D., Kouchaki, E., Bahmani, F., Borzabadi, S., & Asemi, Z. (2019a). Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr, 38(3), 1031-1035. 10.1016/j.clnu.2018.05.018

Tomova, A., Husarova, V., Lakatosova, S., Lakatosova, S., Bakos, J., Vlkova, B., & Ostatnikova, D. (2015). Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav, 138, 179-187. 10.1016/j.physbeh.2014.10.033

Turnbaugh, P. J., Bäckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 3(4), 213-223. 10.1016/j.chom.2008.02.015

Uher, R. (2014). Gene-environment interactions in severe mental illness. Front Psychiatry, 5(48), 1-9. 10.3389/fpsyt.2014.00048

Valladares, R., Bojilova, L., Potts, A. H., Cameron, E., Gardner, C., Lorca, G., & Gonzalez, C. F. (2013). Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J, 27(4), 1711-1720. 10.1096/fj.12-223339

Valverde, J. R., & Mellado, R. P. (2013). Analysis of metagenomic data containing high biodiversity levels. PLoS One, 8(3), e58118. 10.1371/journal.pone.0058118

Vetulani, J. (2013). Early maternal separation: A rodent model of depression and a prevailing human condition. Pharmacol Reports, 65(6). 10.1016/S1734-1140(13)71505-6

Vijay N, & Morris M. (2014). Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des, 20(10), 1487-1498. 10.2174/13816128113199990462

Vigo, D. V., Kestel, D., Pendakur, K., Thornicroft, G., & Atun R. (2019). Disease burden and government spending on mental, neurological, and substance use disorders, and self-harm: cross-sectional, ecological study of health system response in the Americas. Lancet Public Heal, 4(2), e89-e96. 10.1016/S2468-2667(18)30203-2

Yang, Z., Huang, S., Zou, D., Dong, D., He, X., Liu, N., & Huang, L. (2016). Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids, 48, 2731-2745. 10.1007/s00726-016-2308-y

Yano, J. M., Yu, K., Donaldson, G. P., & Shastri, G. G. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), 264-276. 10.1016/j.cell.2015.02.047

Downloads

Publicado

10/04/2021

Como Citar

LAMI, K. F.; OLIVEIRA, V. F. de; BATISTA, K. Z. S. Eixo intestino-cérebro e modulação imunoneuroendócrina em doenças neurológicas e psiquiátricas: Uma revisão sistemática. Research, Society and Development, [S. l.], v. 10, n. 4, p. e28110414185, 2021. DOI: 10.33448/rsd-v10i4.14185. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14185. Acesso em: 17 jul. 2024.

Edição

Seção

Artigos de Revisão