Eje intestino-cerebro y modulación inmune neuroendocrina en enfermedades neurológicas y psiquiátricas: Una revisión sistemática
DOI:
https://doi.org/10.33448/rsd-v10i4.14185Palabras clave:
Microbioma Gastrointestinal; Inmunidad Activa; Trastornos Mentales; Sistemas Neurosecretores; Enfermedades del sistema nervioso.Resumen
El presente estudio tuvo como objetivo explorar la influencia del eje cerebro-intestino en la modulación neuroendocrina e inmunológica en trastornos neurológicos y psiquiátricos. Esta revisión sistemática siguió las pautas de Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA), y las búsquedas se realizaron en las bases de datos electrónicas PubMed y SciELO utilizando combinaciones del Gastrointestinal Microbiome, Neurosecretory Systems, Immune Response, Nervous System Diseases y Mental Disorders. De los 144 estudios generados por el cruce de descriptores, 32 fueron excluidos por estar duplicados en las bases de datos, 13 por no estar relacionados con los objetivos de la revisión y otros 29 por no cumplir con los criterios de elegibilidad seleccionados. Por lo tanto, se incluyeron 70 estudios en la presente revisión. La comunicación entre el tracto gastrointestinal y el SNC se produce a través de vías neuronales, endocrinas e inmunológicas a través de a) producción de neurotransmisores, b) metabolismo del triptófano, c) modulación de la actividad inmunitaria en el SNC y SNE, d) producción de ácidos grasos de cadena corta, e) la producción de hormonas intestinales, y f) la producción de aminoácidos de cadena ramificada.
Citas
Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., & Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), 1885-1895. 10.1016/j.psyneuen.2012.03.024
Akbaraly, T. N., Brunner, E. J., Ferrie, J. E., Marmot, M. G., Kivimaki, M., & Singh-Manoux A. (2009). Dietary pattern and depressive symptoms in middle age. Br J Psychiatry, 195(5), 408-413. 10.1192/bjp.bp.108.058925
Asano, Y., Hiramoto, T., Nishino, R., Aiba, Y., Kimura, T., Yoshihara, K., & Sudo, N. (2012). Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol - Gastrointest Liver Physiol, 303(11), G1288-G1295). 10.1152/ajpgi.00341.2012
Barouei, J., Moussavi, M., & Hodgson, D. M. (2012). Effect of maternal probiotic intervention on HPA Axis, immunity and gut microbiota in a rat model of irritable bowel syndrome. PLoS One, 7(10), e46051. 10.1371/journal.pone.0046051
Barrett, E., Ross, R. P., O’Toole, P. W., Fitzgerald, G. F, & Stanton C. (2012). γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol, 113(2), 411-417. 10.1111/j.1365-2672.2012.05344.x
Blachier, F., Mariotti, F., Huneau, J. F., & Tomé, D. (2007). Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids, 33(4), 547-562. 10.1007/s00726-006-0477-9
Belkaid, Y., & Hand, T. W. (2014) Role of the microbiota in immunity and inflammation. Cell, 157(1), 121-157. 10.1016/j.cell.2014.03.011
Berer, K., Gerdes, L. A., Cekanaviciute E., Jia, X., Xiao, L., Xia, Z., & Wekerle, H. (2017). Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A, 114(40), 10719-10724. 10.1073/pnas.1711233114
Boem, F., & Amedei, A. (2019). Healthy axis: Towards an integrated view of the gut-brain health. World J Gastroenterol, 25(19), 3838-3841. 10.3748/wjg.v25.i29.3838
Bohórquez, D. V., Shahid, R. A., Erdmann, A., Kreger, A. M., Wang, Y., Calakos, N., & Liddle, R. A. (2015). Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest, 125(2), 782-786. 10.1172/JCI78361
Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett, 626, 56-63. 10.1016/j.neulet.2016.02.009
Bravo, J. A., Forsythe P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A, 108(38), 16050-16055. 10.1073/pnas.1102999108
Brosnan, J. T., & Brosnan, M. E. (2006). Branched-chain amino acids: Enzyme and substrate regulation. Journal of Nutrition, 136(1), 207S-211S. 10.1093/jn/136.1.207s
Chen, J., Chia, N., Kalari, K. R., Yao, J. Z., Novotna, M., Soldan, M. M. P., Luckey, D. H., & Mangalam, A, K. (2016). Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep, 6, 28484. 10.1038/srep28484
Cho, I., & Blaser, M. J. (2012). The human microbiome: At the interface of health and disease. Nat Rev Genet, 13, 260-270. 10.1038/nrg3182
Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., & Cryan, J. F. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 18, 666-673. 10.1038/mp.2012.77
Cryan, J. F., & O’Mahony, S. M. (2011). The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol Motil, 23(3), 187-192. 10.1111/j.1365-2982.2010.01664.x
Cummings, J., Rombeau, J., & Sakata, T. (2004). Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge University Press. Editor: John H. Cummings.
Dai, Z. L., Wu, G., & Zhu, W. Y. (2011). Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front Biosci, 16, 1768-1786. 10.2741/3820
Davey, K. J., Cotter, P. D., O’Sullivan, O., Crispie, F., Dinan, T. G., Cryan, J. F., & O'Mahony. (2013). Antipsychotics and the gut microbiome: Olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry, 3, e309. 10.1038/tp.2013.83
De Angelis, M., Francavilla, R., Piccolo, M., De Giacomo, A., & Gobbetti, M. (2015). Autism spectrum disorders and intestinal microbiota. Gut Microbes, 6(3), 207-213. 10.1080/19490976.2015.1035855
DeCastro, M., Nankova, B. B., Shah, P., Patel, P., Mally, P. V., Mishra, R., & La Gamma, E. F. (2005). Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Mol Brain Res, 142(1), 28-38. 10.1016/j.molbrainres.2005.09.002
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., & Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A, 107(33), 14692-14696. 10.1073/pnas.1005963107
Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., & Dinan, T. G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res, 43(2), 164-174. 10.1016/j.jpsychires.2008.03.009
Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J. F., & Dinan, T. G. (2010). Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience, 170(4), 1179-1188. 10.1016/j.neuroscience.2010.08.005
Dickerson, F., Adamos, M., Katsafanas, E., Khushalani, S., Origoni, A., Savage, C., & Yolken, R. (2017). The association between immune markers and recent suicide attempts in patients with serious mental illness: A pilot study. Psychiatry Res, 255, 8-12. 10.1016/j.psychres.2017.05.005
Dickerson, F., Adamos, M., Katsafanas, E., Khushalani, S., Origoni, A., Savage, C., & Yolken, R. H. (2018). Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: A randomized controlled trial. Bipolar Disord, 20(7), 614-621. 10.1111/bdi.12652
Dinan, T. G., Stanton, C., & Cryan, J. F. (2013). Psychobiotics: A novel class of psychotropic. Biol Psychiatry, 74(10), 720-726. 10.1016/j.biopsych.2013.05.001
Ding, H. T., Taur ,Y., & Walkup, J. T. (2016). Gut Microbiota and Autism: Key Concepts and Findings. J Autism Dev Disord, 47, 480-489. 10.1007/s10803-016-2960-9
Duerkop, B. A., Vaishnava, S., & Hooper, L. V. (2009). Immune Responses to the Microbiota at the Intestinal Mucosal Surface. Immunity, 31(3), 368-376. 10.1016/j.immuni.2009.08.009
Elinav, E., Strowig, T., Kau, A. L., Henao-Mejia, J., Thaiss, C. A., Booth, C. J. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 145(5), 745-757. 10.1016/j.cell.2011.04.022
Erny, D., De Angelis, A. L. H., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 18, 965-977. 10.1038/nn.4030
Evans, S. J., Bassis, C. M., Hein, R., Assari, S., Flowers, S. A., Kelly, M. B., & Mclnnis, M. G. (2017). The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res, 87, 23-29. 10.1016/j.jpsychires.2016.12.007
Fattorusso, A., Di Genova, L., Dell’isola, G. B., Mencaroni, E., & Esposito, S. (2019). Autism spectrum disorders and the gut microbiota. Nutrients, 11(3), 521. 10.3390/nu11030521
Fernstrom, J. D. (2005). Branched-chain amino acids and brain function. Journal of Nutrition, 135(6), 1539S-1546S. 10.1093/jn/135.6.1539s
Gómez-Eguílaz, M., Ramón-Trapero, J. L., Pérez-Martínez, L., & Blanco, J. R. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: A pilot study. Benef Microbes, 9(6), 875-881. 10.3920/BM2018.0018
Hasegawa, S., Goto, S., Tsuji, H., Okuno, T., Asahara, T., Nomoto, K., & Hirayama, M. (2015). Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One, 10(11), e0142164). 10.1371/journal.pone.0142164
He, Z., Cui, B. T., Zhang, T., Li, P., Long, C.-Y., Ji, G.-Z., & Zhang, F.-M. (2017). Fecal microbiota transplantation cured epilepsy in a case with Crohn’s Disease: The first report. World J Gastroenterol, 23(19), 3565-3568. 10.3748/wjg.v23.i19.3565
Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., & Mazmanian, S. K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451-1463. 10.1016/j.cell.2013.11.024
Huuskonen, J., Suuronen, T., Nuutinen, T., Kyrylenko, S., & Salminen, A. (2004). Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol, 141(5), 874-880. 10.1038/sj.bjp.0705682
Inoue, R., Sakaue, Y., Sawai, C., Sawai, T., Ozeki, M., Romero-Pérez, G. A., & Tsukahara, T. (2016). A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Biosci Biotechnol Biochem, 80(12). 10.1080/09168451.2016.1222267
Jangi, S., Gandhi, R., Cox, L. M., Li, N., Glehn, F. V., Yan, R., & Patel, B. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nat Commun, 7(12015). 10.1038/ncomms12015
Jordal, P. B., Dueholm, M. S., Larsen, P., Petersen, S. V., Enghild, J. J., Christiansen, G., Hojurup, P., & Otzen, D. E. (2009). Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. Appl Environ Microbiol, 75(12), 4101-4110. 10.1128/AEM.02107-08
Kekuda, R., Manoharan, P., Baseler, W., & Sundaram, U. (2013). Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line. Dig Dis Sci, 58, 660-667. 10.1007/s10620-012-2407-x
Keshavarzian, A., Green, S. J., Engen, P. A., Voigt, R. M., Naqib, A., Forsyth, C. B., & Shannon, K. M. (2015). Colonic bacterial composition in Parkinson’s disease. Mov Disord, 30(10), 1351-1360. 10.1002/mds.26307
Kidd, M., Gustafsson, B. I., Drozdov, I., & Modlin, I. M. (2009). IL1β- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn’s disease. Neurogastroenterol Motil, 21(4), 439-450. 10.1111/j.1365-2982.2008.01210.x
Landgrave-Gómez, J., Mercado-Gómez, O., & Guevara-Guzmán, R. (2015). Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci, 9(58), 1-11. 10.3389/fncel.2015.00058
La Rosa, F., Saresella, M., Marventano, I., Piancone, F., Ripamonte, E., Al-Daghri, N., Bazzini, C., & Clerici, M. (2019). Stavudine Reduces NLRP3 Inflammasome Activation and Modulates Amyloid-β Autophagy. J Alzheimers Dis, 72(2), 401-412. 10.3233/JAD-181259
Larraufie, P., Doré, J., Lapaque, N., & Blottière, H. M. (2017). TLR ligands and butyrate increase Pyy expression through two distinct but inter-regulated pathways. Cell Microbiol, 19(2), e12648. 10.1111/cmi.12648
Larsen, P., Nielsen, J. L., Otzen, D., & Nielsen, P. H. (2008). Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol. 10.1128/AEM.02274-07
Leblhuber, F., Steiner, K., Schuetz, B., Fuchs, D., & Gostner, J. M. (2018). Probiotic supplementation in patients with Alzheimer’s dementia - An explorative intervention study. Curr Alzheimer Res, 15(12), 1106-1113. 10.2174/1389200219666180813144834
Li ,Q., Han, Y., Dy, A. B. C., Hager-Man, R. J., & Hager-man, R. J. (2017). The gut microbiota and autism spectrum disorders. Front Cell Neurosci, 11(120), 1-14. 10.3389/fncel.2017.00120
Liu, X., Cao, S., & Zhang, X. (2015). Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet. J Agric Food Chem, 63(36), 7885-7895. 10.1021/acs.jafc.5b02404
Macfarlane, G. T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int, 95(1), 50-60. 10.5740/jaoacint.SGE_Macfarlane
Maes, M., Kubera, M., & Leunis, J. C. (2008). The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett, 29(1), 117-124.
Mawe, G. M., & Hoffman, J. M. (2013). Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol, 10, 473-486. 10.1038/nrgastro.2013.105
Matsumoto, M., Kibe, R., Ooga, T., Aiba, Y., Sakawi, E., Koga, Y., & Benno, Y. (2013). Cerebral low-molecular metabolites influenced by intestinal microbiota: A pilot study. Front Syst Neurosci, 7(9), 1-19. 10.3389/fnsys.2013.00009
Messaoudi, M., Lalonde, R., Violle, N. Javelot, H., Desor, D., Nejdi, A., & Cazaubiel, J.-M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr, 105(5), 755-764. 10.1017/S0007114510004319
Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T., Chihara, N., & Yamamura, T. (2015). Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One, 10(9), e0137429. 10.1371/journal.pone.0137429
Morowitz, M. J., Carlisle E. M., & Alverdy, J. C. (2011). Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am, 91(4), 771-785. 10.1016/j.suc.2011.05.001
Mouihate, A., Galic, M. A., Ellis, S. L., Spencer, S. J., Tsutsui S., & Pittman, Q. J. (2010). Early life activation of Toll-like Receptor 4 reprograms neural anti-inflammatory pathways. J Neurosci, 30(23), 7975-7983. 10.1523/JNEUROSCI.6078-09.2010
Nankova, B. B., Agarwal, R., MacFabe, D. F, & La Gamma E. F. (2014). Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells - Possible relevance to autism spectrum disorders. PLoS One, 9(8), e103740. 10.1371/journal.pone.0103740
Navarro, F., Liu, Y., & Rhoads, J. M. (2016). Can probiotics benefit children with autism spectrum disorders? World J Gastroenterol, 22(46), 10093-10102. 10.3748/wjg.v22.i46.10093
Nguyen, T. T., Kosciolek, T., Maldonado, Y., Daly, R. E., Martin, A. S., McDonald, D., & Jeste, D. V. (2019). Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res, 204, 23-29. 10.1016/j.schres.2018.09.014
Nishino, R., Mikami, K., Takahashi, H., Tomonaga, S., Furuse, M., Hiramoto, T., & Sudo, N. (2013). Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil, 25(6), 521-e371. 10.1111/nmo.12110
Ohland, C. L., Kish, L., Bell, H., Thiesen, A., Hotte, N., Pankiv, E., & Madsen, K. L. (2013). Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology, 38(9), 1738-1747. 10.1016/j.psyneuen.2013.02.008
Okubo, R., Koga, M., Katsumata, N., Odamaki, T., Matsuyama, S., Oka, M., & Matsuoka, Y. Y. (2019). Effect of Bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. J Affect Disord, 245, 377-385. 10.1016/j.jad.2018.11.011
Pierantozzi, M., Pietroiusti, A., Brusa, L., Galati, S., & Stefani, A., Lunardi,...Galante, A. (2006). Helicobacter pylori eradication and L-dopa absorption in patients with PD and motor fluctuations. Neurology, 66(12), 1824-1829. 10.1212/01.wnl.0000221672.01272.ba
Peng, A., Qiu, X., Lai, W., Li, W., Zhang, L., Zhu, X., & Chen, L. 2018. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res, 147, 102-107. 10.1016/j.eplepsyres.2018.09.013
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
PRISMA (2015). Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiologia e Serviços de Saúde, 24(2), 335-342. Recuperado em 30 de março de 2021, de http://scielo.iec.gov.br/scielo.php?script=sci_arttext&pid=S1679-49742015000200017&lng=pt&tlng=pt.
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., & Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59-65. 10.1038/nature08821
Scheperjans, F., Aho, V., Pereira, P. A. B., Koskinen, K., Paulin, L., Pekkonen, E., & Auvinen, P. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord, 30(3), 350-358. 10.1002/mds.26069
Srikantha, P., & Hasan Mohajeri M. (2019). The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int J Mol Sci, 20(9), 2115. 10.3390/ijms20092115
Stilling, R. M., van de Wouw, M., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2016). The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int, 99, 99-110. 10.1016/j.neuint.2016.06.011
Tankou, S. K., Regev, K., Healy, B. C., Cox, L. M., Tjon, E., Kivisakk, P., & Weiner, H. L. (2018). Investigation of probiotics in multiple sclerosis. Mult Scler, 24(1), 58-63. 10.1177/1352458517737390
Tamtaji, O. R., Heidari-soureshjani, R., Mirhosseini, N., Kouchaki, E., Bahmani, F., Aghadavod, E., & Asemi, Z. (2019b). Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin Nutr, 38(6), 2569-2575. 10.1016/j.clnu.2018.11.034
Tamtaji, O. R., Taghizadeh, M., Kakhaki, R. D., Kouchaki, E., Bahmani, F., Borzabadi, S., & Asemi, Z. (2019a). Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr, 38(3), 1031-1035. 10.1016/j.clnu.2018.05.018
Tomova, A., Husarova, V., Lakatosova, S., Lakatosova, S., Bakos, J., Vlkova, B., & Ostatnikova, D. (2015). Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav, 138, 179-187. 10.1016/j.physbeh.2014.10.033
Turnbaugh, P. J., Bäckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 3(4), 213-223. 10.1016/j.chom.2008.02.015
Uher, R. (2014). Gene-environment interactions in severe mental illness. Front Psychiatry, 5(48), 1-9. 10.3389/fpsyt.2014.00048
Valladares, R., Bojilova, L., Potts, A. H., Cameron, E., Gardner, C., Lorca, G., & Gonzalez, C. F. (2013). Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J, 27(4), 1711-1720. 10.1096/fj.12-223339
Valverde, J. R., & Mellado, R. P. (2013). Analysis of metagenomic data containing high biodiversity levels. PLoS One, 8(3), e58118. 10.1371/journal.pone.0058118
Vetulani, J. (2013). Early maternal separation: A rodent model of depression and a prevailing human condition. Pharmacol Reports, 65(6). 10.1016/S1734-1140(13)71505-6
Vijay N, & Morris M. (2014). Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des, 20(10), 1487-1498. 10.2174/13816128113199990462
Vigo, D. V., Kestel, D., Pendakur, K., Thornicroft, G., & Atun R. (2019). Disease burden and government spending on mental, neurological, and substance use disorders, and self-harm: cross-sectional, ecological study of health system response in the Americas. Lancet Public Heal, 4(2), e89-e96. 10.1016/S2468-2667(18)30203-2
Yang, Z., Huang, S., Zou, D., Dong, D., He, X., Liu, N., & Huang, L. (2016). Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids, 48, 2731-2745. 10.1007/s00726-016-2308-y
Yano, J. M., Yu, K., Donaldson, G. P., & Shastri, G. G. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), 264-276. 10.1016/j.cell.2015.02.047
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Kauê Felipe Lami; Victor Fernandes de Oliveira; Keila Zaniboni Siqueira Batista
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.