Reconocimiento de gestos en imágenes usando redes neuronales Artificiales
DOI:
https://doi.org/10.33448/rsd-v8i11.1470Palabras clave:
inteligencia artificial; Aprendizaje automático; Identificación de expresiones corporales; Reconocimiento de imagen; Análisis de sentimientos.Resumen
La inteligencia artificial es un área de investigación informática que se centra en el desarrollo de mecanismos y dispositivos para simular el razonamiento humano. Dentro de esto, una subárea importante es el reconocimiento de imágenes. Este artículo tiene como objetivo describir la parte inicial de una investigación que tiene como objetivo analizar e identificar los sentimientos registrados de las expresiones corporales en videos de reseñas de productos. Se han planificado pruebas experimentales para identificar la mejor técnica para resolver el problema. Se analizaron y probaron algunas formas de identificación de gestos mediante el uso de redes neuronales.
Citas
Acharya, T., Mitra, S. (2007). Gesture Recognition: a survey. IEEE Transaction onSystems, Man, And cybernetics – Part C: Applications and reviews, 37(1): 3. Acess on: August, 01, 2019.
Bar, K. (2013). Sentiment Analysis of Movie Reviews and Twitter Statuses. Machine Learning–Final Project. Pp. 1-12. Available from: <http://www.cs.tau.ac.il/~kfirbar/mlproject/project-ml.pdf>. Acess on: August, 2nd, 2019.
Bay, H., Tuytelaars, T., Van Gool, L. J. (2006). SURF: Speeded up robust features. In: Anal of The 9th European Conference on Computer Vision (ECCV 2006). Graz, Austria, pp. 404-417.
Bittencourt, J. R. & Osório, F. S. (2002). O uso de redes neurais artificiais na detecção de pele em imagens digitais visando o reconhecimento de gestos. In: XI SEMINCO – Seminário de Computação 2002 da UNISINOS. Disponível em: <http://www.inf.furb.br/seminco/2002/artigos/Bittencourt-seminco2002-29.pdf>. Acesso em: 02 ago 2019.
Braga, A. P., Carvalho, A. C. P. L. F. & Ludemir, T. B. (2000). Redes neurais artificiais: teoria e aplicações. Ed. LTC, Rio de Janeiro/RJ.
Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on PatternAnalysis and Machine Intelligence, 8(6): 679-698.
Duan, D., Qian, W., Pan, S., Shi, L. & Lin, C. (2012). VISA: A Visual Sentiment AnalysisSystem. In: VINCI '12 Proceedings of the 5th International Symposium on Visual Information Communication and Interaction. pp. 22-28. ACM, New York. Available from: <http://dl.acm.org/citation.cfm?id=2397700>. Acess on: Aug., 2nd, 2019.
Haykin, S. (2001). Redes neurais: princípios e prática. Ed. Bookman, Porto Alegre/RS.
Jaques, P.A., Vicari, R. M. (2005). Estado da Arte em Ambientes Inteligentes de Aprendizagem que Consideram a Afetividade do Aluno. Revista Informática na Educação: Teoria e Prática, 8(1).
Maynard, D., Dupplaw, D., Hare, J. (2013). Multimodal Sentiment Analysis of SocialMedia. University of Sheffield, Sheffield. Available from: <https://gate.ac.uk/sale/bcs-sgai-2013/arcomem.pdf>. Acess on: 1st. Aug. 2019.
Pereira, A.S, Shitsuka, D.M., Parreira, F.J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Ed. UAB/NTE/UFSM, Santa Maria/RS. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 02 ago. 2019.
Picard, R. W. (1997). Affective Computing. M.I.T Media Laboratory Perceptual Computing Section Technical Report. Disponível em: <http://affect.media.mit.edu/pdfs/95.picard.pdf>. Acesso em: 01 ago. 2019.
Prabowo, R., Thelwall, M. (2014). Sentiment Analysis: A Combined Approach. Jan.2009. Disponível em: <https://s3.amazonaws.com/academia.edu.documents/34362252/rudy-sentiment-preprint.pdf?response-content-disposition=inline%3B%20filename%3DSentiment_analysis_A_combined_approach.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20190802%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190802T181547Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=23e16fddaa9ae9b0a45aa8aa157a8e48ef4863e79d670cbd7058d4c19d92a7da>. Acesso em: August, 2nd. 2019.
Santos, H. C. (2010). Investigação e implementação de técnicas em Análise de Sentimentos. 35 f. Monografia apresentada como requisito parcial para obtenção do Grau em Engenharia da Computação, Universidade Federal de Pernambuco, Recife.
Siersodorfer, S., Minack, E., Deng, F. & Hare, J. (2010). Analyzing and Predicting Sentiment of Images on the Social Web. Article published in Siersdorfer Sources. Available from: <http://www.l3s.de/~siersdorfer/sources/2010/mm10-siersdorfer.pdf>. Acess on: August, 2nd, 2019.
Sikandar, M. (2014). A Survey for Multimodal Sentiment Analysis Methods. Int. J. Computer Technology & Applications, 5(1): 1470-1476, Jul. 2014. Disponível em: <http://www.ijcta.com/documents/volumes/vol5issue4/ijcta2014050421.pdf>. Acess on: August, 1st, 2019.
Wollmer, M., Weninger, F., Knaup, T., Schuller, B., Sun, C., Sagae, K. & Morency, L. (2013). Youtube Movie Reviews: Sentiment Analysis in na Audio-Visual Context. Intelligent Systems, IEEE, 28(3), Marc. 2013. Available from: <http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6487473>. Acess on: August, 1st, 2019.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.