Propiedades funcionales y organolépticas de las plantas de condimentos: Revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i6.14958

Palabras clave:

Alimentación; Componentes funcionales; Condimentos.

Resumen

Las plantas condimentadoras están presentes en la vida cotidiana y tienen gran ac eptación en el mundo debido al exquisito sabor y aroma diferenciado, haciendo los platos más apetitosos y nutritivos. Además de las propiedades organolépticas, también tienen propiedades funcionales que potencian su importancia en la alimentación. Dada la importancia de los condimentos, el presente estudio buscó describir, a través de materiales científicos, las propiedades funcionales y organolépticas de las principales plantas condimentadoras. Fue elaborado a partir de una revisión de la literatura sobre las propiedades funcionales y organolépticas del orégano (Origanum vulgare), pimienta negra (Piper nigrum), achiote (Bixa orellana), jengibre (Zingiber officinale), tomillo (Thymus vulgaris) y albahaca (Ocimum basilicum). La investigación se realizó en las bases de datos Google Scholar, Periódicos Capes, Scielo y ScienceDirect cubriendo el período comprendido entre 1984 y 2019, realizando un análisis de la adecuación del contenido a la temática propuesta, recopilando los datos y reuniéndose posteriormente p or temas específicos y registrar la información y referencias respetando la fidelidad de los originales. Así, luego de la selección con base en la referencia bibliográfica, se realizó un análisis de varianza multivariado, donde se asignó una puntuación de 1 para la presencia de la función o compuesto secundario o especializado, y 0 para ausencia, luego se sometió a análisis quimiométrico utilizando software estadístico MetaboAnalyst (4.0). Se concluyó a través de esta revisión que por propiedades funcionales, el achiote tiene características en común con la pimienta negra, las cuales pueden ser utilizadas cuando el objetivo es principalmente obtener condimentos con propiedades anticonvulsivas. En cuanto a las propiedades organolépticas, la albahaca y el orégano son similares, teniendo metabolitos en común.

Citas

Ahmed, R. et al. (2000). Influence of dietary ginger (Zingiber officinales Rosc) on oxidative stress induced b y m alath ion in rats. Food and Chemical Toxicology, 38(5), 443-450.

Ahsan, M. R. et al. (2009) Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride-induced hepatotoxicity in rats.

European Journal of Scientific Research, 37(2), 302–310.

Alef, B., Abdennacer, B. & Mohamed, B. (2013). α-Amylase Inhibitory activities of Origanumglandulosum, a North African endemic species. International Journal of Advanced Research, 1(7), 635–644.

Antunes, L. M. G. et al. (2005). Evaluation of the clastogenicity and anticlastogenicity of the carotenoid bixin in human lym pho cyte cultu res. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 585(1–2), 113–119.

Babili, F. E. et al. (2011). Oregano: Chemical analysis and evaluation of its antimalarial, antioxidant, and cytotoxic activities. Journal of Food Science, 76(3), C512–C518.

Bagheri, H., Manap, M. Y. B. & Solati, Z. (2014). Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction an d h yd ro - distillation. Talanta, 121, 220–228.

Belemkar, S., Kumar, A. & Pata, M. K. (2013). Pharmacological Screening of Herbal Extract of Piper nigrum (Maricha) and Cinnamomum zeylanicum

(Dalchini) for Anticonvulsant Activity. Inventi Rapid Ethnopharmacology, 2013(2), 1–5.

Berić, T. et al. (2008). Protective effect of basil (Ocimumbasilicum L.) against oxidative DNA damage and mutagenesis. Food and Chemical Toxicology 46(2), 724-732.

Bhandari, U., Sharma, J. N. & Zafar, R. (1998). The protective action of ethanolic ginger (Zingiber officinale) extract in cholesterol-fed rabb its. Journal o f Ethnopharmacology, 61(2), 167-71.

Brasil. (2005). Ministério da Saúde. Secretaria de Vigilância Sanitária. RDC nº 276 de 23 de setembro 2005. Diário Oficial da República Federativa do Brasil. Brasília.

Chavan, P. S. & Tupe, S.G. (2014). Antifungal activity and mechanism of action of carvacrol and thymol againstvineyard and wine spoilage y easts. Food. Control, 46, 115–120.

Chong, J., Wishart, D. S. & Xia, J. (2019). Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current Protocols in Bioinformatics, 68. https://doi. org/10.1002/cpbi.86.

Cluster Agroindustrial do Ribatejo. (2015). Tendências do Mercado Alimentar do Brasil: Aspetos do consumo, produto, distribuição e comunicação. 108.

Dal Pozzo, M. et al. (2011). Atividade antimicrobiana de óleos essenciais de condimentos frente a Staphylococcus spp isolados de mastite caprina. Ciência Rural, 41(4), 667-672.

Darvishzadeh-mahani, F. et al. (2012). (Zingiber officinale Roscoe) prevents the development of morphine analgesic tolerance and physical d epend en ce in rats. Journal of ethnopharmacology, 141(3), 901-907.

Deb dipanwita, D. et al. (2011). Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic can cer cell lin e HL - 60. Chemico - Biological Interactions, 193, 97–106 .

Duarte, R. D., Bovi, O. A. & Maia, N. B. (1989). Corantes-programa de pesquisa do Instituto Agronômico de Campinas. Seminário de corantes naturais para alimentos, 1, 45-53.

Ee, G. C. L. et al. (2009). Alkaloids from Piper sarmentosum and Piper nigrum. Natural Product Research, 23(15), 1416–1423.

El-nekeety, A. A. et al. (2011). Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon, 57(7-8), 984-991. Funk, J. L. et al. (2009). Comparative effects of two gingerol-containing Zingiber officinale extracts on experimental rheumatoid arthritis. Journal of Natural

Products, 72(3), 403-7.

Guimarães, A. G. et al. (2012). Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn-Schmiedeberg's Arch. Pharmacol, 385, 253–263.

Gülçin, I., Elmastaş, M. & Aboul‐enein, H. Y. (2007). Determination of antioxidant and radical scavenging activity of Basil ( Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(4), 354-361.

Habib, S. H. et al. (2008). Ginger extract (Zingiber officinale) has anticancer and antiinflammatory effects on ethionine induced hepatoma rats. Clinics, 63(6), 807–13.

Han, X. & Parker, T. L. (2017). Anti-inflammatory, tissue remodeling, immunomodulatory, and anticancer activities of oregano ( Origanum vulgare) essential oil in a human skin disease model. Biochimie Open, 4, 73–77.

Hritcu, L. et al. (2015). M. Anxiolytic and antidepressant profile of the methanolic extract of Piper nigrum fruits in b eta- am yloid (1- 42) rat m od el of Alzheimer’s disease. Behavioral and Brain Functions, 11(1), 1–13.

Islam, S. U., Rather, L. J. & Mohammad, F. (2016). Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications – A review. Journal of Advanced Research, 7(3), 499-514.

Jeena, K. et al. (2014). Antioxidant, Anti-inflammatory and Antinociceptive Properties of Black Pepper Essential Oil (Piper n igrum Lin n). Journal of Essential Oil-Bearing Plants, 17(1), 1–12.

Jiang, H.et al. (2006). Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: tools for authentication of ginger ( Zingiber o fficinale

Rosc.). Phytochemistry, 67(5), 1673–85.

Kwee, E. M. & Niemeyer, E. D. (2011). Variations in phenolic composition and antioxidant properties among 15 basil ( Ocimum basilicum L.) cultivars. Food Chemistry, 128(4), 1044-1050.

Lantz, R. C. (2007). The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine, 14, 123–8.

Leahu, A. et al. (2016). Variation in content of antioxidant and free radical scavenging activity of basil (Ocimum basilicum), dill (Anethumgraveolens ) an d parsley (Petroselinum sativum). Food and Environment Safety Journal, 12(4).

Lee, H. S. et al. (2008). Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. Journal of Nutritional Biochemistry, 19(5), 313–9. Linguanotto Neto, N., Freire, R. & Lacerda, I. (2019). Misturando sabores: receitas e harmonização de ervas e especiarias. São Paulo: Senac, 157.

Llana-ruiz-cabello, M. et al. (2014). M. Evaluation of the mutagenicity and genotoxic potential of carvacrol and thymol using the Ames Salmonella tes tandalkaline, Endo III-and FPGmodified comet assays with the human cell line Caco-2. Food and Chemical Toxicology, 72, 122-128.

Loizzo, M. R. et al. (2009). Chemical analysis, antioxidant, antiinflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chemistry, 117(1), 174–180.

Marrelli, M. et al. (20016). Composition, antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing wild in Lebanon and Greece. Natural Product Research, 30(6), 735–739.

Martínez-tomé, M. et al. (2001). Antioxidant properties of Mediterranean spices compared with common food additives. Journal of Food Protection, 6 4 (9), 1412–1419.

Medeiros, P. M., Pinto, B. L. S. & Nascimento, V. T. (2015). Can organoleptic properties explain the differential use of medicinal plants Evidence from Northeastern Brazil. Journal of Ethnopharmacology, 159, 43-48.

Meister, A. et al. (1999). Antispasmodic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: discrimination between drug and ethanol effects. Planta Medica, 65(6), 512–516.

Mendes, G. M., Rodrigues-das-dores, R. G. & Campideli, L. C. (2015). Avaliação do teor de antioxidantes, flavonoides e compostos fenólicos em preparações condimentares. Revista Brasileira de Plantas Medicinais, 17(2), 297-304.

Metaboanalyst. (2020). Statistical, functional and integrative analysis of metabolomics data. https:// www.metaboanalyst.ca. Mishra, A. et al. (2015). Anticonvulsant mechanisms of piperine, a piperidine alkaloid. Channels, 9(5), 317-323.

Moratoya, E. E. et al. (2013). Mudanças no padrão de consumo alimentar no Brasil e no mundo. Política agrícola, 22(1), 72-84.

Núñez, V. et al. (2004). Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Columbia. Brazilian Journal of Medicaland Biological Research, 37(7), 969–977.

Okazaki, K., Kawazoe, K. & Takaishi, Y. K. (2002). Human platelet aggregation inhibitors from thyme (Thymus vulgaris). Phytotherapy Resourch, 1 6(4), 398–399.

Onyesife, C. O., Ogugua, V. N. & Anaduaka, E. G. (2014) Hypoglycemic Potentials of Ethanol Leaves Extract of Black Pepper (Piper Nigrum) on Allox an - Induced Diabetic Rats. Annals of Biological Research, 5(6), 26–31.

Politeo, O., Jukic, M. & Milos, M. (2007). Chemical composition and antioxidant capacity of free volatile aglycones from b asil (Ocimum basilicum L.) compared with its essential oil. Food chemistry, 101(1), 379-385.

Potraj, B. et al. (2019). Deciphering the role of Bixin isolated from Bixa orellana L., in epileptic and psychotic experimental models in rod en ts. Manipal Journal of Pharmaceutical Sciences, 4(2), 15-22.

Quiroga, P. R. et al. (2013). Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia tu rb ina ta ess en tial o ils.

International Journal of Food Science and Technology, 48(3), 642–649.

Sakurai, F. N. et al. (2016). Caracterização das propriedades funcionais das ervas aromáticas utilizadas em um hospital especializado em cardiopneumologia.

Demetra, 11(4), 1097-1113.

Sarikurkcu, C. et al. (2015). Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Industrial Crops and Products, 70, 178–184.

Shilpi, J. A. et al. (2006). Preliminary pharmacological screening of Bixa orellana L. leaves. Journal of Ethnopharmacology, 108 (2), 264–271. Silva, R. R. et al. (2001). Curcumina e norbixina: ação no metabolismo lipídico de aves domésticas. Medicina (Ribeirão Preto), 34 (2), 177-182.

Soares, R. D. et al. (2007). Influência da temperatura e velocidade do ar na secagem de manjericão ( Ocimum basilicum L.) com relação aos teo res d e ó leos

essenciais e de linalol. Ciência e agrotecnologia, 31(4), 1108-1113.

Stoilova, I. et al. (2007). Antioxidant activity of a ginger extract (Zingiber officinale). Food chemistry, 102(3), 764-770.

Stringheta, P. C. et al. (2007). Políticas de saúde e alegações de propriedades funcionais e de saúde para alimentos no Brasil. Revista Brasileira de Ciências Farmacêuticas, 43(2).

Suekawa, M. et al. (1984). Pharmacological studies on ginger. I. Pharmacological actions of pungent constituents,(6)-gingeroland (6)-sh ogaol. Journal o f Pharmacobio-Dynamics, 7(11), 836-848.

Susheela, U. (2000). Spices: Tools for alternative or complementary medicine. Food Technology, 54 (5), 61-65.

Tasleem, F. et al. (2014). Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pacific Journal of Tropical Medicine, 7(S1), S461–S468. Teles, F. et al. (2000). Bixaorellana (annatto) exerts a sustained hypoglycemic effect in experimental diabetes mellitus in rats. Medical Express, 1(1), 36–38.

Tellez-monzón, L. A. & Nolazco-cama, D. M. (2017). Estudio de la composición química del aceite esencial d e o régano ( Origanu m v ulgare sp p.) d e Tacna. Ingeniería Industrial, 35, 195-205.

Thomson, M. et al. (2002). The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory an d an tithromb otic agen t. Prostaglandins Leukotrienes Essent Fatty Acids, 67(6), 475-8.

Tsai, T. H., Tsai, P. J. & Su, S. C. (2005) Antioxidant and antiflammatory activities of several commonly used spices. Journal of Food Science, 70(1), 93-7.

Ündeger, Ü. et al. (2009). Antioxidantactivities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lungfibroblast cells at low levels ofcarvacrol and thymol. Food and Chemical Toxicology, 47(8), 2037–2043.

Van eck, A. et al. (2020). Sauce it up: influence of condiment properties on oral processing behavior, bolus formation an d s enso ry p ercep tion o f s olid foods. Food & Function, 11(7), 6186-6201.

Vieira, C. A. & Silva, A. F. (2017). A história e a química das especiarias: experiência de aula interdisciplinar para estudantes d o en sino m éd io. Revista Brasileira de Educação e Cultura, (16), 57-70.

Xu, J. et al. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Journal of Applied Microbiology, 47, 174–179.

Wei, C. K. et al. (2017). 6-Paradol and 6-shogaol, the pungente compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6 -parado l reduces blood glucose in high-fat diet-fed mice. International Journal of Molecular Sciences, 18(1), 168.

Yong, Y. K. et al. (2013). Chemical constituents and antihistamine activity of Bixa orellana leaf extract. BMC Complementaryand Alternative Medicine, 13(1), 1.

Zhai, B.et al. (2014). Antimalarialevaluation of the chemical constituents of hairy root culture of Bixa orellana L. Molecules, 19(1), 756–766.

Zhang, D. et al. (2015). Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid. Journal of Neurochemistry, 1 33 (6) , 898–908.

Publicado

19/05/2021

Cómo citar

IZIDORO, M.; PRATES, A. R. .; NEVES, C. . S.; SOUZA, E. P. de; LOSSOLLI, N. A. B.; BONFIM, F. P. . G. Propiedades funcionales y organolépticas de las plantas de condimentos: Revisión. Research, Society and Development, [S. l.], v. 10, n. 6, p. e2010614958, 2021. DOI: 10.33448/rsd-v10i6.14958. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14958. Acesso em: 30 jun. 2024.

Número

Sección

Revisiones