Propriedades funcionais e organolépticas de plantas condimentares: Revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v10i6.14958

Palavras-chave:

Alimentação; Componentes funcionais; Condimentos.

Resumo

As plantas condimentares estão presentes no cotidiano e possuem uma grande aceitação no mundo devido ao gosto requintado e aroma diferenciado, tornando os pratos mais apetitosos e nutritivos. Além das  propriedades organolépticas, possuem também propriedades funcionais que realçam a sua importância na alimentação. Tendo  em vista a importância dos condimentos, o presente estudo buscou descrever por meio de materiais científicos as propriedades funcionais e organolépticas das principais plantas condimentares. Foi elaborado a partir de uma revisã o da literatura acerca das propriedades funcionais e organolépticas dos condimentos orégano (Origanum vulgare), pimenta-do-reino (Piper nigrum), urucum (Bixa orellana), gengibre (Zingiber officinale), tomilho (Thymus vulgaris) e manjericão (Ocimum basilicum). A pesquisa foi realizada  nas bases de dados Google Scholar, Periódicos Capes, Scielo e ScienceDirect englobando o período entre 1984 e 2019, realizando uma análise da  adequabilidade do conteúdo ao tema proposto, compilação dos dados e posterior reunião por tópicos específicos e fichamento das informações e referências respeitando a fidelidade dos originais. Deste modo, após a seleção com base no referencial bibliográfico, foi realizada uma análise multivariada da variância, onde foi atribuído pontuação 1 para presença da função ou do composto secundário ou especializado, e 0 para ausência , a seguir submetidos à análise quimiométrica por meio do software estatístico gratuito Metabo Analyst (4.0). Concluiu-se através dessa revisão que para as propriedades funcionais, o urucum tem características em comum com a pimenta -do-reino, ambos podendo ser utilizados quando o objetivo é principalmente a   obtenção de condimentos com propriedades anticonvulsivantes. Já para as propriedades organolépticas, manjericão e orégano assemelham -se, possuindo metabólitos em comum.

Referências

Ahmed, R. et al. (2000). Influence of dietary ginger (Zingiber officinales Rosc) on oxidative stress induced b y m alath ion in rats. Food and Chemical Toxicology, 38(5), 443-450.

Ahsan, M. R. et al. (2009) Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride-induced hepatotoxicity in rats.

European Journal of Scientific Research, 37(2), 302–310.

Alef, B., Abdennacer, B. & Mohamed, B. (2013). α-Amylase Inhibitory activities of Origanumglandulosum, a North African endemic species. International Journal of Advanced Research, 1(7), 635–644.

Antunes, L. M. G. et al. (2005). Evaluation of the clastogenicity and anticlastogenicity of the carotenoid bixin in human lym pho cyte cultu res. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 585(1–2), 113–119.

Babili, F. E. et al. (2011). Oregano: Chemical analysis and evaluation of its antimalarial, antioxidant, and cytotoxic activities. Journal of Food Science, 76(3), C512–C518.

Bagheri, H., Manap, M. Y. B. & Solati, Z. (2014). Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction an d h yd ro - distillation. Talanta, 121, 220–228.

Belemkar, S., Kumar, A. & Pata, M. K. (2013). Pharmacological Screening of Herbal Extract of Piper nigrum (Maricha) and Cinnamomum zeylanicum

(Dalchini) for Anticonvulsant Activity. Inventi Rapid Ethnopharmacology, 2013(2), 1–5.

Berić, T. et al. (2008). Protective effect of basil (Ocimumbasilicum L.) against oxidative DNA damage and mutagenesis. Food and Chemical Toxicology 46(2), 724-732.

Bhandari, U., Sharma, J. N. & Zafar, R. (1998). The protective action of ethanolic ginger (Zingiber officinale) extract in cholesterol-fed rabb its. Journal o f Ethnopharmacology, 61(2), 167-71.

Brasil. (2005). Ministério da Saúde. Secretaria de Vigilância Sanitária. RDC nº 276 de 23 de setembro 2005. Diário Oficial da República Federativa do Brasil. Brasília.

Chavan, P. S. & Tupe, S.G. (2014). Antifungal activity and mechanism of action of carvacrol and thymol againstvineyard and wine spoilage y easts. Food. Control, 46, 115–120.

Chong, J., Wishart, D. S. & Xia, J. (2019). Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current Protocols in Bioinformatics, 68. https://doi. org/10.1002/cpbi.86.

Cluster Agroindustrial do Ribatejo. (2015). Tendências do Mercado Alimentar do Brasil: Aspetos do consumo, produto, distribuição e comunicação. 108.

Dal Pozzo, M. et al. (2011). Atividade antimicrobiana de óleos essenciais de condimentos frente a Staphylococcus spp isolados de mastite caprina. Ciência Rural, 41(4), 667-672.

Darvishzadeh-mahani, F. et al. (2012). (Zingiber officinale Roscoe) prevents the development of morphine analgesic tolerance and physical d epend en ce in rats. Journal of ethnopharmacology, 141(3), 901-907.

Deb dipanwita, D. et al. (2011). Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic can cer cell lin e HL - 60. Chemico - Biological Interactions, 193, 97–106 .

Duarte, R. D., Bovi, O. A. & Maia, N. B. (1989). Corantes-programa de pesquisa do Instituto Agronômico de Campinas. Seminário de corantes naturais para alimentos, 1, 45-53.

Ee, G. C. L. et al. (2009). Alkaloids from Piper sarmentosum and Piper nigrum. Natural Product Research, 23(15), 1416–1423.

El-nekeety, A. A. et al. (2011). Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon, 57(7-8), 984-991. Funk, J. L. et al. (2009). Comparative effects of two gingerol-containing Zingiber officinale extracts on experimental rheumatoid arthritis. Journal of Natural

Products, 72(3), 403-7.

Guimarães, A. G. et al. (2012). Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn-Schmiedeberg's Arch. Pharmacol, 385, 253–263.

Gülçin, I., Elmastaş, M. & Aboul‐enein, H. Y. (2007). Determination of antioxidant and radical scavenging activity of Basil ( Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(4), 354-361.

Habib, S. H. et al. (2008). Ginger extract (Zingiber officinale) has anticancer and antiinflammatory effects on ethionine induced hepatoma rats. Clinics, 63(6), 807–13.

Han, X. & Parker, T. L. (2017). Anti-inflammatory, tissue remodeling, immunomodulatory, and anticancer activities of oregano ( Origanum vulgare) essential oil in a human skin disease model. Biochimie Open, 4, 73–77.

Hritcu, L. et al. (2015). M. Anxiolytic and antidepressant profile of the methanolic extract of Piper nigrum fruits in b eta- am yloid (1- 42) rat m od el of Alzheimer’s disease. Behavioral and Brain Functions, 11(1), 1–13.

Islam, S. U., Rather, L. J. & Mohammad, F. (2016). Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications – A review. Journal of Advanced Research, 7(3), 499-514.

Jeena, K. et al. (2014). Antioxidant, Anti-inflammatory and Antinociceptive Properties of Black Pepper Essential Oil (Piper n igrum Lin n). Journal of Essential Oil-Bearing Plants, 17(1), 1–12.

Jiang, H.et al. (2006). Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: tools for authentication of ginger ( Zingiber o fficinale

Rosc.). Phytochemistry, 67(5), 1673–85.

Kwee, E. M. & Niemeyer, E. D. (2011). Variations in phenolic composition and antioxidant properties among 15 basil ( Ocimum basilicum L.) cultivars. Food Chemistry, 128(4), 1044-1050.

Lantz, R. C. (2007). The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine, 14, 123–8.

Leahu, A. et al. (2016). Variation in content of antioxidant and free radical scavenging activity of basil (Ocimum basilicum), dill (Anethumgraveolens ) an d parsley (Petroselinum sativum). Food and Environment Safety Journal, 12(4).

Lee, H. S. et al. (2008). Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. Journal of Nutritional Biochemistry, 19(5), 313–9. Linguanotto Neto, N., Freire, R. & Lacerda, I. (2019). Misturando sabores: receitas e harmonização de ervas e especiarias. São Paulo: Senac, 157.

Llana-ruiz-cabello, M. et al. (2014). M. Evaluation of the mutagenicity and genotoxic potential of carvacrol and thymol using the Ames Salmonella tes tandalkaline, Endo III-and FPGmodified comet assays with the human cell line Caco-2. Food and Chemical Toxicology, 72, 122-128.

Loizzo, M. R. et al. (2009). Chemical analysis, antioxidant, antiinflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chemistry, 117(1), 174–180.

Marrelli, M. et al. (20016). Composition, antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing wild in Lebanon and Greece. Natural Product Research, 30(6), 735–739.

Martínez-tomé, M. et al. (2001). Antioxidant properties of Mediterranean spices compared with common food additives. Journal of Food Protection, 6 4 (9), 1412–1419.

Medeiros, P. M., Pinto, B. L. S. & Nascimento, V. T. (2015). Can organoleptic properties explain the differential use of medicinal plants Evidence from Northeastern Brazil. Journal of Ethnopharmacology, 159, 43-48.

Meister, A. et al. (1999). Antispasmodic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: discrimination between drug and ethanol effects. Planta Medica, 65(6), 512–516.

Mendes, G. M., Rodrigues-das-dores, R. G. & Campideli, L. C. (2015). Avaliação do teor de antioxidantes, flavonoides e compostos fenólicos em preparações condimentares. Revista Brasileira de Plantas Medicinais, 17(2), 297-304.

Metaboanalyst. (2020). Statistical, functional and integrative analysis of metabolomics data. https:// www.metaboanalyst.ca. Mishra, A. et al. (2015). Anticonvulsant mechanisms of piperine, a piperidine alkaloid. Channels, 9(5), 317-323.

Moratoya, E. E. et al. (2013). Mudanças no padrão de consumo alimentar no Brasil e no mundo. Política agrícola, 22(1), 72-84.

Núñez, V. et al. (2004). Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Columbia. Brazilian Journal of Medicaland Biological Research, 37(7), 969–977.

Okazaki, K., Kawazoe, K. & Takaishi, Y. K. (2002). Human platelet aggregation inhibitors from thyme (Thymus vulgaris). Phytotherapy Resourch, 1 6(4), 398–399.

Onyesife, C. O., Ogugua, V. N. & Anaduaka, E. G. (2014) Hypoglycemic Potentials of Ethanol Leaves Extract of Black Pepper (Piper Nigrum) on Allox an - Induced Diabetic Rats. Annals of Biological Research, 5(6), 26–31.

Politeo, O., Jukic, M. & Milos, M. (2007). Chemical composition and antioxidant capacity of free volatile aglycones from b asil (Ocimum basilicum L.) compared with its essential oil. Food chemistry, 101(1), 379-385.

Potraj, B. et al. (2019). Deciphering the role of Bixin isolated from Bixa orellana L., in epileptic and psychotic experimental models in rod en ts. Manipal Journal of Pharmaceutical Sciences, 4(2), 15-22.

Quiroga, P. R. et al. (2013). Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia tu rb ina ta ess en tial o ils.

International Journal of Food Science and Technology, 48(3), 642–649.

Sakurai, F. N. et al. (2016). Caracterização das propriedades funcionais das ervas aromáticas utilizadas em um hospital especializado em cardiopneumologia.

Demetra, 11(4), 1097-1113.

Sarikurkcu, C. et al. (2015). Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Industrial Crops and Products, 70, 178–184.

Shilpi, J. A. et al. (2006). Preliminary pharmacological screening of Bixa orellana L. leaves. Journal of Ethnopharmacology, 108 (2), 264–271. Silva, R. R. et al. (2001). Curcumina e norbixina: ação no metabolismo lipídico de aves domésticas. Medicina (Ribeirão Preto), 34 (2), 177-182.

Soares, R. D. et al. (2007). Influência da temperatura e velocidade do ar na secagem de manjericão ( Ocimum basilicum L.) com relação aos teo res d e ó leos

essenciais e de linalol. Ciência e agrotecnologia, 31(4), 1108-1113.

Stoilova, I. et al. (2007). Antioxidant activity of a ginger extract (Zingiber officinale). Food chemistry, 102(3), 764-770.

Stringheta, P. C. et al. (2007). Políticas de saúde e alegações de propriedades funcionais e de saúde para alimentos no Brasil. Revista Brasileira de Ciências Farmacêuticas, 43(2).

Suekawa, M. et al. (1984). Pharmacological studies on ginger. I. Pharmacological actions of pungent constituents,(6)-gingeroland (6)-sh ogaol. Journal o f Pharmacobio-Dynamics, 7(11), 836-848.

Susheela, U. (2000). Spices: Tools for alternative or complementary medicine. Food Technology, 54 (5), 61-65.

Tasleem, F. et al. (2014). Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pacific Journal of Tropical Medicine, 7(S1), S461–S468. Teles, F. et al. (2000). Bixaorellana (annatto) exerts a sustained hypoglycemic effect in experimental diabetes mellitus in rats. Medical Express, 1(1), 36–38.

Tellez-monzón, L. A. & Nolazco-cama, D. M. (2017). Estudio de la composición química del aceite esencial d e o régano ( Origanu m v ulgare sp p.) d e Tacna. Ingeniería Industrial, 35, 195-205.

Thomson, M. et al. (2002). The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory an d an tithromb otic agen t. Prostaglandins Leukotrienes Essent Fatty Acids, 67(6), 475-8.

Tsai, T. H., Tsai, P. J. & Su, S. C. (2005) Antioxidant and antiflammatory activities of several commonly used spices. Journal of Food Science, 70(1), 93-7.

Ündeger, Ü. et al. (2009). Antioxidantactivities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lungfibroblast cells at low levels ofcarvacrol and thymol. Food and Chemical Toxicology, 47(8), 2037–2043.

Van eck, A. et al. (2020). Sauce it up: influence of condiment properties on oral processing behavior, bolus formation an d s enso ry p ercep tion o f s olid foods. Food & Function, 11(7), 6186-6201.

Vieira, C. A. & Silva, A. F. (2017). A história e a química das especiarias: experiência de aula interdisciplinar para estudantes d o en sino m éd io. Revista Brasileira de Educação e Cultura, (16), 57-70.

Xu, J. et al. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Journal of Applied Microbiology, 47, 174–179.

Wei, C. K. et al. (2017). 6-Paradol and 6-shogaol, the pungente compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6 -parado l reduces blood glucose in high-fat diet-fed mice. International Journal of Molecular Sciences, 18(1), 168.

Yong, Y. K. et al. (2013). Chemical constituents and antihistamine activity of Bixa orellana leaf extract. BMC Complementaryand Alternative Medicine, 13(1), 1.

Zhai, B.et al. (2014). Antimalarialevaluation of the chemical constituents of hairy root culture of Bixa orellana L. Molecules, 19(1), 756–766.

Zhang, D. et al. (2015). Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid. Journal of Neurochemistry, 1 33 (6) , 898–908.

Downloads

Publicado

19/05/2021

Como Citar

IZIDORO, M.; PRATES, A. R. .; NEVES, C. . S.; SOUZA, E. P. de; LOSSOLLI, N. A. B.; BONFIM, F. P. . G. Propriedades funcionais e organolépticas de plantas condimentares: Revisão. Research, Society and Development, [S. l.], v. 10, n. 6, p. e2010614958, 2021. DOI: 10.33448/rsd-v10i6.14958. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14958. Acesso em: 30 jun. 2024.

Edição

Seção

Artigos de Revisão