Soforolípidos la Starmerella bombicola como desinfectante en lavado de canales por aspersión e inmersión en sacrificio y tratamiento de aves.

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i8.15210

Palabras clave:

Biosurfactante; Calidad microbiológica; Industria avícola; Antimicrobianos.

Resumen

Este trabajo tuvo como objetivo aplicar soforolípidos producidos por la levadura Starmerella bombicola, como desinfectante, en el agua de lavado de canales de pollo, simulando dos etapas de sacrificio y procesamiento por aspersión e inmersión de aves contra los microorganismos Staphylococcus aureus, Escherichia coli, coliformes termotolerantes y contaminación aeróbica mesófila. Para esta evaluación, se aplicaron la solución de soforolípidos a 500, 2.250 y 4.000 µg.mL-1 para verificar el efecto antimicrobiano. Los resultados evaluados demostraron que la reducción más significativa de la aspersión se obtuvo cuando se asperjó la solución que contenía 4.000 µg.mL-1, con una reducción de 1,32 para S. aureus, 1,47 para E. coli, 1,43 para coliformes termotolerantes y 1 .05 para aerobios mesófilos. En agua de inmersión, la acción higienizante aumenta gradualmente con el tiempo de exposición. Hubo una reducción total de células viables a los 90 minutos con la concentración de 2250 μg.mL-1 y 30 minutos de exposición a la concentración de 4,000 μg.mL-1. Los soforolípidos mostraron un potencial innovador contra los microorganismos contaminantes en la industria avícola y podrían ser un nuevo agente desinfectante que brinde mayor seguridad alimentaria a los productos de la industria avícola.

Biografía del autor/a

Victória Akemi Itakura Silveira, Universidade Estadual de Londrina

Centro de Ciências Exatas (CCE) - Departamento de Bioquímica

Dionísio Borsato, Universidade Estadual de Londrina

Centro de Ciências Exatas (CCE) - Departamento Química

Guilherme Biz, Universidade Estadual de Londrina

Centro de Ciências Exatas (CCE) - Departamento de Estatística

Maria Antonia Pedrine Colabone Celligoi, Universidade Estadual de Londrina

Centro de Ciências Exatas (CCE) - Departamento de Bioquímica

Citas

ABPA. (2019). Relatórios Anuais da Associação Brasileira de Proteína Animal. http://abpa-br.com.br/setores/avicultura/publicacoes/relatorios-anuais.

Asmer, H. J., Hans, J., Lang, S., Wagner, F. & Wray, V. (1988). Microbial production, structure elucidation and bioconversion of sophorose lipids. Journal of the American Oil Chemists’ Society, 65 (9), 1460–1466.

Bashor, M. P.,. Curtis, P. A., Keener, K. M., Sheldon B.W., Kathariou S. & Osborne, J.A. (2004). Effects of Carcass Washers on Campylobacter Contamination in Large Broiler Processing Plants. Poultry Science, 83 (7), 1232–1239.

Bolder, N. M. (1997). Decontamination of meat and poultry carcasses. Trends in Food Science and Technology, 8 (7), 221–227.

Brasil. (1998). Ministério da Agricultura e Abastecimento, Portaria nº 210, de 10 de novembro de 1998. Regulamento Técnico da Inspeção Tecnológica e Higiênico Sanitária de Carnes de Aves. Diário Oficial da União da República Federativa do Brasil, Seção 1, 226. Brasília, DF.

Brasil. (2011). Ministério da Agricultura, Pecuária e Abastecimento. Resolução RDC n° 4, de 4 de Outubro de 2011. Departamento de Inspeção de Produtos de Origem Animal. Diário Oficial da União da República Federativa do Brasil, Brasília, DF.

Brizio, A. P. D. R., Isolan, L. W., Salles, B. & Prentice, C. (2013). Correlação entre contaminação gastrointestinal e presença de salmonella spp. em carcaças de frango industrializadas no Rio Grande do Sul, 0, 12–17.

Cooper, D. G. & Paddock, D. A. (1983). Torulopsis petrophilum and surface activity. Applied and Environmental Microbiology, 46 (6), 1426–1429.

Depner, R. (2015). Contaminação por mesófilos e enterobactérias e dos aspectos operacionais entre os métodos de refile.

Dengle-Pulate, V., Joshi, J., Chandorkar, P., Bhagwat, S. & Prabhune, A. A. (2014). Application of Sophorolipids Synthesized Using Lauryl Alcohol As a Germicide and Fruit-Vegetable Wash. Prabhune et al. World Journal of Pharmacy and Pharmaceutical Sciences, 3 (7), 1630–1643.

De Oliveira, M. R., Magri, A, Baldo, C, Camilios-Neto, D, Minucelli, T & Celligoi, M. A. P. C. (2015). Review: Sophorolipids A Promising Biosurfactant and it’s Applications. International Journal of Advanced Biotechnology and Research, 16 (2), 161–174.

Diaz de Rienzo, M. A., Stevenson, P. S., Marchant, R. & Banat, I. M. (2015). Antibacterial properties of biosurfactants against selected Gram posivite and negative bacteria. FEMS Microbiology Letters, 44 (0), 1–22.

Fontoura, I. C. C., Saikawa, G. I. A., Silveira, V. A. I., Pan, N. C., Amador, I. R., Baldo, C., Rocha, S. P. D. & Celligoi, M. A. P. C. (2020). Antibacterial activity of sophorolipids from Candida bombicola against human pathogens. Brazilian Archives as Biology and Technology, 63, e20180568.

Fracchia, L., Banat, J. J., Cavallo, M, Ceresa, C. & Banat, I. M. (2015). Potential therapeutic applications of microbial surface-active compounds. AIMS Bioengineering, 2 (3), 144–162.

Glover, R. E. R. R., Jones, M. V., Jackson, S. K. & Rowlands, C. C. (1999). An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiology Letters, 177 (1), 57–62.

Hipólito, A., Caretta, T. O., Silveira, V. A. I., Bersaneti, G. T., Mali, S. & Celligoi, M. A. P. C. (“in press” 2021). Active biodegradable cassava starch films containing sophorolipids produced by Starmerella bombicola ATCC® 22214™. Journal of Applied Polymer Science.

Hipólito, A., Silva, R. A. A., Caretta, T. O., Silveira, V. A. I., Amador, I. R., Panagio, L. A., Borsato, D. & Celligoi, M. A. P. C. (2020). Evalution of the antifungal activity of sophorolipids from Starmerella bombicola against food spoilage fungi. Biocatalysis and Agricultural Biotechnology, 29 (10.1797).

Hoa H. L. N., Loan Q. L., Eun-ki K., Ha T. T., Duy D. N., Khanh Q. H. & Dung H. N. (2017). Production and characterization of sophorolipids produced by Candida bombicola using sugarcane molasses and coconut oil. Asia Pac J Sci Technol. 22(2), 66-75.

Holley, R. A. &, Gill, C. O. (2005). Usos da embalagem em atmosfera modificada para carnes e produtos cárneos. ITAL – III Congresso Brasileiro de Ciência e Tecnologia de Carnes.

Hugas, M. & Tsigarida, E. (2008). Meat Pros and cons of carcass decontamination. European Food Safety Authority. 78, 43–52.

Isolan, L.W., Perdoncini. G., Todeschini. B., Santos L. R., Guahyba A. S., Depner R. & Nascimento. V. P. (2019). Carcass washing system and Salmonella spp. control in poultry slaughterhouses. Arq. Brasileira Medicina Veterinária e. Zootecnia, 71, 1.

Joshi-Navare, K., Khanvilkar, P. & Prabhune, A. (2013). Jatropha oil derived sophorolipids: Production and characterization as laundry detergent additive. Biochemistry Research International.

Lang, S., Katsiwela, E. & Wagner, F. (1989). Antimicrobial effects of biosurfactants. Lipid / Fett, 91 (9), 363–366.

Lydon, H. L., Baccile, N., Callaghan, B., Marchant, R., Mitchell, C. A. & Banat, I. M. (2017). Adjuvant antibiotic activity of acidic sophorolipids with potential for facilitating wound healing. Antimicrobial Agents and Chemotherapy, 61 (5).

Minucelli, T., Ribeiro-Viana, R. M., Borsato, D., Andrade, G., Cely, M. V. T., De Oliveira, M. R., Baldo, C. & Celligoi, M. A. P. C. (2017). Sophorolipids Production by Candida bombicola ATCC 22214 and Its Potential Application in Soil Bioremediation. Waste and Biomass Valorization, 8, (3), 743–753.

Mokgatla, R. M., Brozel, V. S. & Gouws, P. A. (1998). Isolation of Salmonella resistant to hypochlorous acid from a poultry abattoir. Letters in Applied Microbiology, 27, 379–382.

Northcutt, J. K., Smith, D. P., Musgrove, M. T., Ingram, K. D. & Hinton, A. (2005). Microbiological impact of spray washing broiler carcasses using different chlorine concentrations and water temperatures. Poultry Science, 84 (10), 1648-1652.

Olanya, O. M., Ukuku, D. O., Solaiman, D. K. Y., Ashby, R. D., Niemira, B.A. &

Mukhopadhyay, S. (2018). Reductionin Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in vitro and on tomato by sophorolipid and sanitiser as affected by temperature and storage time. International Journal of Food Science and Technology, 53 (5), 1303–1315.

Paulino, B. N., Pessoa, M. G., Mano, M. C. R., Molina, G., Neri-Numa, I. A. & Pastore, G. M. (2016). Current status in biotechnological production and applications of glycolipid biosurfactants. Applied Microbiology and Biotechnology, 100 (24), 10265–10293.

Pontes, C., Alves, M., Santos, C., Ribeiro, M.H., Gonçalves, L., Bettencourt, A. F. & Ribeiro, I.A.C. (2016). Can Sophorolipids prevent biofilm formation on silicone catheter tubes?. International Journal of Pharmaceutics, 513 (1–2), 697–708.

Purnell, G, James, C., James, J. S., Howell, M. & Corry, J. E. L. (2014) Comparison of Acidified Sodium Chlorite, Chlorine Dioxide, Peroxyacetic Acid and Tri-Sodium Phosphate Spray Washes for Decontamination of Chicken Carcasses. Food Bioprocess Technology, 7 (2093–2101).

Shah, V. , Badia, D. & Ratsep, P. (2007). Sophorolipids having enhanced antibacterial activity. Antimicrobial Agents and Chemotherapy, 51 (1), 397–400.

Silva, R. B. T. R. Da, Nääs, I. D. A. & Moura, D. J. De. (2009). Broiler and swine production: animal welfare legislation scenario. Scientia Agricola, 66 (6), 713–720.

Silveira, V. A. I., Freitas C. A. U. Q. & Celligoi M. A. P. C. (2018). Antimicrobial applications of sophorolipid from Candida bombicola: A promising alternative to conventional drugs. J App Biol Biotech, 6 (6), 87-90.

Silveira, V. A. I., Nishio, E. K., Freitas, C. A. U. Q., Amador, I. R. Kobayashi, R. K. T., Caretta, T. O., Macedo, F. & Celligoi, M. A. P. C. (2019). Production and antimicrobial activity of sophorolipid against Clostridium perfringens and Campylobacter jejuni and their additive interaction with lactic acid. Biocatalysis and Agricultural Biotechnology, 21, 101287.

Silveira, V. A. I., Marim, B. M., Hipólito, A., Gonçalves, M. C. & Celligoi, M. A. P. C. (2020). Characterization and antimicrobial properties of bioactive packaging films based on polylactic acid-sophorolipid for the control of foodborne pathogens. Food Packaging and Shelf Life, 26, 100591.

Solaiman, D. K. Y., Ashby, R. D., Zerkowski, J. A., Foglia, T. A.& Uknalis, J. (2016). Antibacterial Activity of Sophorolipids Produced by Candida bombicola on Gram-positive and Gram-negative Bacteria Isolated from Salted Hides. Jalca, 111 (November), 358–364.

Solaiman, D. K. Y., Ashby, R. D. & Uknalis, J. (2017). Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay. Journal of Microbiological Methods, 136, 21–29.

Soufi, B., Krug, K., Harst, A. & Macek, B.(2015). Characterization of the E. coli proteome and its modifications during growth and ethanol stress. Frontiers in Microbiology, 6.

USDA. (2014). United States Department of Agriculture –. Food Safety and Inspection Service – FSIS. Laboratory Guidebook: notice of change. Athens, GA. 1-19.

USDA. (2016). United States Department of Agriculture. Food Safety and Inspection Service – FSIS. FSIS Directive 7120, Revision 33. Safe and suitable ingredients used in the production of meat, poultry, and egg products. Washington, DC, USDA, 1-89.

Valotteau, C., Banat, I. M., Mitchell, C. A., Lyndon, H., Marchant, R., Babonneau, F., Pradier, C. M., Baccile, N. & Humblot, V. (2017). Antibacterial properties of sophorolipid-modified gold surfaces against Gram positive and Gram negative pathogens. Colloids and Surfaces B: Biointerfaces, 157, 325–334.

Van Bogaert, I. N. A., Saerens, K., De Muynck, C., Develter, D., Soetaert, W. & Vandamme, E.J. (2007). Microbial production and application of sophorolipids. Applied Microbiology and Biotechnology, 76, 23–34.

Zhang, X., Ashby, R. D., Solaiman, D. K. Y., Uknalis, J. & Fan, X. (2016). Inactivation of Salmonella spp. and Listeria spp. by palmitic, stearic, and oleic acid sophorolipids and thiamine dilauryl sulfate. Frontiers in Microbiology, 7 (December), 1–11.

Zhang, X., Ashby, R. D., Solaiman, D. K. Y., Liu, Y. & Fan, X. (2017). Antimicrobial activity and inactivation mechanism of lactonic and free acid sophorolipids against Escherichia coli O157:H7. Biocatalysis and Agricultural Biotechnology, 11, 176–182.

Zhang, X., Fan, X., Solaiman, D. K. Y., Ashby, R. D., Liu, Z., Mukhopadhyay, S. & Yan, R. (2016). Inactivation of Escherichia coli O157:H7 in vitro and on the surface of spinach leaves by biobased antimicrobial surfactants. Food Control, 60, 158–165.

Publicado

08/07/2021

Cómo citar

FREITAS, C. A. U. Q. .; SILVEIRA, V. A. I. .; BORSATO, D. .; BIZ, G.; PEDRÃO, M. R. .; CELLIGOI, M. A. P. C. . Soforolípidos la Starmerella bombicola como desinfectante en lavado de canales por aspersión e inmersión en sacrificio y tratamiento de aves. Research, Society and Development, [S. l.], v. 10, n. 8, p. e13110815210, 2021. DOI: 10.33448/rsd-v10i8.15210. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15210. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas