Análisis tridimensional de elementos finitos de tejido óseo en prótesis sobre implantes de tres unidades variando la ferulización, posicionamiento y longitud de los implantes en la región posterior del maxilar

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i5.15336

Palabras clave:

Fenómenos Biomecánicos; Análisis de Elementos Finitos; Implantación dental endoósea.

Resumen

El objetivo del presente estudio fue analizar la tensión y microdeformación del tejido óseo cortical generada por las fuerzas oclusales sobre las prótesis de tres elementos implantosoportados, variando la unión y longitud de los implantes, instalados en la región posterior del maxilar. Quince modelos tridimensionales se simularon y cada modelo tridimensional consistió en un bloque óseo maxilar referido a la región de la 1ª PM a la 1ª M derecha, presentando tres implantes de hexágono externo (HE) de 4.0 mm de diámetro, soportando una prótesis metalocerámica atornillada, variando el factor unión (coronas unitarias y ferulizadas: rectas y en posición tripoide), longitud con implantes (10 mm, 8,5 mm y 7 mm Ø4 mm). El análisis del tejido óseo se realizó utilizando los mapas de Máxima Máxima Tensión (MPa) y Microdeformación (µε). Los mayores valores de la tensión/microdeformación se observaron en la carga oblicua. El entablillado asociado al posicionamiento del trípode generó un mejor comportamiento biomecánico. La asociación de implantes cortos con implantes más largos no ha demostrado un beneficio biomecánico. La reducción de la longitud del implante (7 mm) generó un comportamiento biomecánico desfavorable. La ferulización fue eficaz para reducir la tensión/microdeformación del tejido óseo cortical, especialmente cuando se asocia con el posicionamiento trípode de los implantes. El aumento de la longitud del implante disminuyó la tensión/microdeformación en el tejido óseo. Los implantes ferulizados cortos mostraron un comportamiento biomecánico similar al de los implantes cortos asociados con implantes más largos.

Citas

Vogel, R., Smith-Palmer, J., & Valentine, W. (2013). Evaluating the health economic implications and cost-effectiveness of dental implants: a literature review. Int J Oral Maxillofac Implants, 28, 343-356.

Abu-Hammad, O., Khraisat, A., Dar-Odeh, N., Jagger, D. C., & Hammerle, C. H. (2007). The staggered installation of dental implants and its effect on bone stresses. Clin Implant Dent Relat Res, 9, 121-127.

Verri, F. R., Batista, V. E., Santiago, J. F. Jr., Almeida, D. A., & Pellizzer, E. P. (2014). Effect of crown-to-implant ratio on peri-implant stress: a finite element analysis. Mater Sci Eng C Mater Biol Appl, 45, 234-240.

Weinberg L A, & & Kruger B. (1996). An evaluation of torque (moment) on implant/prosthesis with staggered buccal and lingual offset. Int J Periodontics Restorative Dent, 16, 252-265.

Lemos, C. A. A., Verri, F. R., Santiago, J. F. Jr., Almeida, D. A. F., Batista, V. E. S., Noritomi, P. Y., & Pellizzer, E. P. (2018). Retention system and splinting on morse taper implants in the posterior maxilla by 3D finite element analysis. Braz Dent J, 29, 30-35.

Abreu, C. W., Nishioka, R. S., Balducci, I., & Consani, R. L. X. (2012) Straight and offset implant placement under axial and nonaxial loads in implant-supported prostheses: strain gauge analysis. J Prosthodont, 21, 535-539.

Batista, V. E. S., Santiago, J. F. Jr., Almeida, D. A., Lopes, L. F., Verri, F. R., & Pellizzer, E. P. (2015). The effect of offset implant configuration on bone stress distribution: a systematic review. J Prosthodont, 24, 93-99.

de Souza Batista, V. E., Verri, F. R., Almeida, D. A. F., Santiago Junior, J. F., Lemos, C. A. A., & Pellizzer, E. P. (2017) Evaluation of the effect of an offset implant configuration in the posterior maxilla with external hexagon implant platform: A 3-dimensional finite element analysis. J Prosthet Dent, 118, 363-371.

Grossmann, Y., Finger, I. M., & Block, M. S. (2005). Indications for splinting implant restorations. J Oral Maxillofac Surg, 63, 1642-1652.

Pellizzer, E. P., Santiago, J. F. Jr., Ribeiro Villa, L. M., de Souza Batista, V. E., Mello, C. C., de Faria Almeida, D. A., & Honório H. M. (2014) Photoelastic stress analysis of splinted and unitary implant-supported prostheses. Appl Phys B, 117, 235-244.

Pellizzer, E. P., de Mello, C. C., Santiago, J. F. Jr., de Souza Batista, V. E., de Faria Almeida, D. A., & Verri, F. R. (2015). Analysis of the biomechanical behavior of short implants: The photo-elasticity method. Mater Sci Eng C Mater Biol Appl, 55, 187-192.

Solnit, G. S., & Schneider, R. L. (1998). An alternative to splinting multiple implants: Use of the ITI system. J Prosthodont, 7, 114-119.

Vázquez Álvarez, R, Pérez Sayáns, M., Gayoso Diaz, P., & García García, A. (2015). Factors affecting peri-implant bone loss: a post-five-year retrospective study. Clin Oral Implants Res, 26, 1006-1014.

Yang, T. C., Maeda, Y., & Gonda, T. (2011). Biomechanical rationale for short implants in splinted restorations: an in vitro study. Int J Prosthodont, 24, 130-132.

Torcato, L. B., Pellizzer, E. P., Verri, F. R., Falcón-Antenucci, R. M., Batista, V. E., & Lopes, L. F. (2014). Effect of the parafunctional occlusal loading and crown height on stress distribution. Braz Dent J, 25, 554-560.

Verri, F. R., Cruz, R. S., de Souza Batista, V. E., Almeida, D. A., Verri, A. C., Lemos, C. A., Santiago, J. F. Jr., & Pellizzer, E. P. (2016). Can the modeling for simplification of a dental implant surface affect the accuracy of 3D finite element analysis? Comput Methods Biomech Biomed Engin, 19, 1665-1672.

Verri, F. R., Santiago, J. F. Jr., Almeida. D. A., de Souza Batista, V. E., Araujo Lemos, C. A., Mello, C. C., & Pellizzer, E. P. (2017). Biomechanical three-dimensional finite element analysis of single implant-supported prostheses in the anterior maxilla, with different surgical techniques and implant types. Int J Oral Maxillofac Implants, 32, e191-198.

Lekholom, U, & Zarb, G. A. (1985) Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, editors. Tissue-integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence, 199-220.

Puri, N., Pradhan, K. L., Chandna, A., Sehgal, V., & Gupta, R. (2007). Biometric study of tooth size in normal, crowded, and spaced permanent dentitions. Am J Orthod Dentofacial Orthop, 132, e7-14.

Nishioka, R. S., de Vasconcellos, L. G., & de Melo Nishioka, G. N. (2011). Comparative strain gauge analysis of external and internal hexagon, Morse taper, and influence of straight and offset implant configuration. Implant Dent, 20, e24-32.

Nishioka, R. S., de Vasconcellos, L. G., & de Melo Nishioka, L. N. (2009). External hexagon and internal hexagon in straight and offset implant placement: strain gauge analysis. Implant Dent, 18, 512-520.

Sütpideler, M., Eckert, S. E., Zobitz, M., & An, K. N. (2004). Finite element analysis of effect of prosthesis height, angle of force application, and implant offset on supporting bone. Int J Oral Maxillofac Implants, 19, 819-125.

Sertgöz A. (1997). Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis. Int J Prosthodont, 10, 19-27.

Sevimay, M., Turhan, F., Kiliçarslan, M. A., & Eskitascioglu, G. (2005). Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent, 93, 227-234.

Verri, F. R., Cruz, R. S., Lemos, C. A., de Souza Batista, V. E., Almeida, D. A., Verri, A. C., & Pellizzer, E. P. (2017b). Influence of bicortical techniques in internal connection placed in premaxillary area by 3D finite element analysis. Comput Methods Biomech Biomed Engin, 20, 193-200.

Pellizzer, E. P., Lemos, C. A. A., Almeida, D. A. F., de Souza Batista, V. E., Santiago Júnior, J. F., & Verri, F. R. (2018). Biomechanical analysis of different implant-abutments interfaces in different bone types: An in silico analysis. Mater Sci Eng C Mater Biol Appl, 90, 645-650.

de Souza Batista, V. E., Verri, F. R., Almeida, D. A., Santiago, J. F. Jr., Lemos, C. A., & Pellizzer, E. P. (2017b). Finite element analysis of implant-supported prosthesis with pontic and cantilever in the posterior maxilla. Comput Methods Biomech Biomed Engin, 20, 663-670.

Frost, H. M. (2003). Bone's mechanostat: A 2003 update. Anat Rec A Discov Mol Cell Evol Biol, 275, 1081-1101.

Mendonça, J. A., Francischone, C. E., Senna, P. M., Matos de Oliveira, A. E., & Sotto-Maior, B. S. (2014). A retrospective evaluation of the survival rates of splinted and non-splinted short dental implants in posterior partially edentulous jaws. J Periodontol, 85, 787-794.

Baggi, L., Cappelloni, I., Di Girolamo, M., Maceri, F., & Vairo, G. (2008). The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent, 100, 422-431.

Ueda, N., Takayama, Y., & Yokoyama, A. (2017). Minimization of dental implant diameter and length according to bone quality determined by finite element analysis and optimized calculation. J Prosthodont Res. 61, 324-332.

Goiato, M. C., Pellizzer, E. P., da Silva, E. V., Bonatto, L. R., & dos Santos, D. M. (2015). Is the internal connection more efficient than external connection in mechanical, biological, and esthetical point of views? A systematic review. Oral Maxillofac Surg, 19, 229-242.

Minatel, L., Verri, F. R., Kudo, G. A. H., de Faria Almeida, D. A., de Souza Batista, V. E., Lemos, C. A. A., Pellizzer, E. P., & Santiago Jr., J. F. (2017). Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses. Mater Sci Eng C Mater Biol Appl, 71, 35-42.

Itoh, H., Caputo, A. A., Kuroe, T., & Nakahara, H. (2004). Biomechanical comparison of straight and staggered implant placement configurations. Int J Periodontics Restorative Dent, 24, 47-55.

Descargas

Publicado

16/05/2021

Cómo citar

BATISTA, V. E. de S. .; VERRI, F. R.; LEMOS, C. A. A.; CRUZ, R. S.; NORITOMI, P. Y. .; PELLIZZER, E. P. Análisis tridimensional de elementos finitos de tejido óseo en prótesis sobre implantes de tres unidades variando la ferulización, posicionamiento y longitud de los implantes en la región posterior del maxilar. Research, Society and Development, [S. l.], v. 10, n. 5, p. e56510515336, 2021. DOI: 10.33448/rsd-v10i5.15336. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15336. Acesso em: 18 may. 2024.

Número

Sección

Ingenierías