Simulación de proceso de producción de biodiesel a partir de destilado de desodorización de aceites vegetales utilizando hidrotalcita-hidroxiapatita como catalizador

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i6.15452

Palabras clave:

Biodiesel; DWSIM; Catálisis heterogénea; Simulación; Transesterificación.

Resumen

Existen pocos estudios de simulación en la literatura con enfoque en la producción de biodiesel a partir del destilado de desodorización de aceite vegetal (DDOV), un residuo proveniente de la etapa de procesamiento del aceite vegetal, utilizando hidrotalcita-hidroxiapatita como catalizador heterogéneo. En este estudio, el proceso de simulación se realizó utilizando el software de interfaz abierta DWSIM® Versión 6.3. La motivación se basó en el desempeño positivo del catalizador durante los estudios experimentales. Así, en el proyecto del simulador, la materia prima lipídica, el etanol y el catalizador se alimentaron juntos en un reactor de conversión CSTR-01. El paquete de fluido termodinámico utilizado para este proceso fue el modelo de coeficiente de actividad de dos líquidos no aleatorios (NRTL). El diagrama de flujo del proceso consistió en la etapa de reacción (transesterificación de aceite) y etapas de separación de los ésteres etílicos producidos, etanol en exceso y purificación del biodiesel. Como resultado, se simularon diferentes escenarios, utilizando aceite de soja comercial como forma comparativa, diferentes tipos de catalizadores y diferentes relaciones molares de alcohol y DDOV. Entre las principales diferencias entre los casos simulados, se demostró que el exceso de alcohol (1:45) provocó una mayor cantidad de consumo de DDOV y, en consecuencia, una mayor formación de ésteres etílicos (biodiesel), resultando en mayores conversiones (> 95 %). Además, los resultados obtenidos confirmaron la idoneidad del DDOV como materia prima con potencial para la producción de biodiésel, ya que es relativamente más económico que los aceites comestibles y contribuye al aprovechamiento de residuos. De esta forma, se demostró que el catalizador químico era capaz de formar los principales ésteres de ácidos grasos incluso utilizando una materia prima residual.

Biografía del autor/a

Laura A. de Almeida, Universidade Federal Rural do Rio de Janeiro

Student in the Chemical Engineering Department

Renata N. Vilas Bôas, Universidade Federal Rural do Rio de Janeiro

Postdoctoral Researcher in the Chemical Engineering Department

Marisa F. Mendes, Universidade Federal Rural do Rio de Janeiro

Professor in the Chemical Engineering Department

Citas

Abdurakhman, Y. B., Putra, Z. A., & Bilad, M. R. (2017). Process simulation and economic analysis of biodiesel production from waste cooking oil with membrane bioreactor. In: AIP Conference Proceedings. AIP Publishing LLC, 1891(1), 020011. https://doi.org/10.1063/1.5005344

Aboelazayem, O., Gadalla, M., & Saha, B. (2018). Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis. Energy, 161, 299-307. https://doi.org/10.1016/j.energy.2018.07.139

Aghbashlo, M., Tabatabaei, M., Rastegari, H., & Ghaziaskar, H. S. (2018). Exergy-based sustainability analysis of acetins synthesis through continuous esterification of glycerol in acetic acid using Amberlyst® 36 as catalyst. Journal of Cleaner Production, 183, 1265-1275. https://doi.org/10.1016/j.jclepro.2018.02.218

ASTM D6751-15, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, ASTM Internacional, West Conshohocken, PA, 2015, www.astm.org.

Baskar, G., & Aiswarya, R. (2016). Trends in catalytic production of biodiesel from various feedstocks. Renewable and Sustainable Energy Reviews, 57, 496-504. https://doi.org/10.1016/j.rser.2015.12.101

Borugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763-4784. https://doi.org/10.1016/j.rser.2012.04.010

Brasil, H., Pereira, P., Corrêa, J., Nascimento, L., Rumjanek, V., Almeida, V., & Rodrigues, E. (2017). Preparation of hydrotalcite–hydroxyapatite material and its catalytic activity for transesterification of soybean oil. Catalysis Letters, 147(2), 391-399. https://doi.org/10.1007/s10562-016-1961-9

Chen, G., Shan, R., Shi, J., Liu, C., & Yan, B. (2015). Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy Conversion and Management, 98, 463-469. https://doi.org/10.1016/j.enconman.2015.04.012

Chilev, C., & Simeonov, E. (2014). Simulation of biodiesel production by transesterification of vegetable oils. Journal of Chemical Technology and Metallurgy, 49(5), 479-486.

Coral, N., Brasil, H., Rodrigues, E., Da Costa, C. E., & Rumjanek, V. (2019). Microwave-modified hydrotalcites for the transesterification of soybean oil. Sustainable Chemistry and Pharmacy, 11, 49-53. https://doi.org/10.1016/j.scp.2019.01.002

Cruz, R. P., Ferreira, F. B., & Rodrigues, F. D. Á. (2017). Simulation and economic analysis of biodiesel production from macauba oil. The Journal of Engineering and Exact Sciences, 3(3), 533-560. https://doi.org/10.18540/2446941603032017533

El-Galad, M. I. (2018). Techno-economic analysis of biodiesel production using co-solvent.

Essamlali, Y., Amadine, O., Larzek, M., Len, C., & Zahouily, M. (2017). Sodium modified hydroxyapatite: Highly efficient and stable solid-base catalyst for biodiesel production. Energy Conversion and Management, 149, 355-367. https://doi.org/10.1016/j.enconman.2017.07.028

Giwa, A., & Umanah, K. S. (2019). Optimization of Biodiesel Production from Used Cooking Oil: Aspen HYSYS Simulation and Experimental Validation. In: International Journal of Engineering Research in Africa. Trans Tech Publications Ltd, 43, 38-48. https://doi.org/10.4028/www.scientific.net/JERA.43.38

Guldhe, A., Singh, B., Mutanda, T., Permaul, K., & Bux, F. (2015). Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renewable and Sustainable Energy Reviews, 41, 1447-1464. https://doi.org/10.1016/j.rser.2014.09.035

Hanif, M. A., Nisar, S., Akhtar, M. N., Nisar, N., & Rashid, N. (2018). Optimized production and advanced assessment of biodiesel: A review. International Journal of Energy Research, 42(6), 2070-2083. https://doi.org/10.1002/er.3990

Hussein, R. Z., Attia, N. K., Fouad, M. K., & ElSheltawy, S. T. (2021). Experimental investigation and process simulation of biolubricant production from waste cooking oil. Biomass and Bioenergy, 144, 105850. https://doi.org/10.1016/j.biombioe.2020.105850

Karacan, S., & Cagatay, M. T. (2018). Simulation and optimization of reactive packed distillation column for biodiesel production using heterogeneous catalyst. International Journal of Energy Applications and Technologies, 5(4), 153-160. https://doi.org/10.31593/ijeat.438001

Knothe, G. (2001). Analytical methods used in the production and fuel Quality Assessment of Biodiesel. Transaction of the American Society of Agricultural Engineers, 2(44), 193-200. https://doi.org/10.13031/2013.4740

Lee, A. F., & Wilson, K. (2015). Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catalysis Today, 242, 3-18. https://doi.org/10.1016/j.cattod.2014.03.072

Ma, F., & Hanna, M. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5

Medeiros, D. (2021). DWSIM Wiki. https://dwsim.inforside.com.br.

Micic, R. D., Tomic, M. D., Kiss, F. E., Martinovic, F. L., Simikic, M. D., & Molnar, T. T. (2016). Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale. Energy Conversion and Management, 124, 377-388. https://doi.org/10.1016/j.enconman.2016.07.043

Morais, S., Mata, T. M., Martins, A. A., Pinto, G. A., & Costa, C. A. (2010). Simulation and life cycle assessment of process design alternatives for biodiesel production from waste vegetable oils. Journal of Cleaner Production, 18(13), 1251-1259. https://doi.org/10.1016/j.jclepro.2010.04.014

Navajas, A., Campo, I., Moral, A., Echave, J., Sanz, O., Montes, M., Odriozola, J. A., Arzamendi, G., & Gandía, L. M. (2018). Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel, 211, 173–181. https://doi.org/10.1016/j.fuel.2017.09.061

Okullo, A., & Noah, T. (2017). Process simulation of biodiesel production from jatropha curcas seed oil. American Journal of Chemical Engineering, 5(4), 56-63. https://doi.org/10.11648/j.ajche.20170504.12

Patel, R. L., & Sankhavara, C. D. (2017). Biodiesel production from Karanja oil and its use in diesel engine: A review. Renewable and Sustainable Energy Reviews, 71, 464-474. https://doi.org/10.1016/j.rser.2016.12.075

Rodrigues, E., Brasil, H., Barros, T., Pereira, C., Dos Reis, M. A. L., & Almeida, O. (2018). Synthesis and characterization of hydrotalcite-hydroxyapatite material doped with carbon nanotubes and its application in. Cerâmica, 64, 166-175. https://doi.org/10.1590/0366-69132018643702230

Ruhul, A. M., Kalam, M. A., Masjuki, H. H., Fattah, I. R., Reham, S. S., & Rashed, M. M. (2015). State of the art of biodiesel production processes: a review of the heterogeneous catalyst. RSC Advances, 5(122), 101023-101044. https://doi.org/10.1039/C5RA09862A

Sajid, Z., Khan, F., & Zhang, Y. (2016). Process simulation and life cycle analysis of biodiesel production. Renewable Energy, 85, 945-952. https://doi.org/10.1016/j.renene.2015.07.046

Santana, H. S., Tortola, D. S., Reis, É. M., Silva Jr, J. L., & Taranto, O. P. (2016). Transesterification reaction of sunflower oil and ethanol for biodiesel synthesis in microchannel reactor: Experimental and simulation studies. Chemical Engineering Journal, 302, 752-762. https://doi.org/10.1016/j.cej.2016.05.122

Sousa, M. R., Santana, H. S., & Taranto, O. P. (2020). Modeling and simulation using OpenFOAM of biodiesel synthesis in structured microreactor. International Journal of Multiphase Flow, 132, 103435. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103435

Souza, M. F., Hirata, G. F., & Batista, E. A. (2020). Evaluation of kinetics and thermodynamic parameters for simulation of palm oil biodiesel production. Fluid Phase Equilibria, 525, 112792. https://doi.org/10.1016/j.fluid.2020.112792

Verma, P., & Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063-1071. https://doi.org/10.1016/j.rser.2016.04.054

Vilas-Bôas, R. N., Da Silva, L. L., Fernandes, L. D., Augusto, B. L., & Mendes, M. F. (2020). Study of the Use of Hydrotalcite–Hydroxyapatite as Heterogeneous Catalysts for Application in Biodiesel Using By-Product as Raw Material. Catalysis Letters, 150, 3642-3652. https://doi.org/10.1007/s10562-020-03274-0

Wang, L., Du, W., Liu, D., Li, L., & Dai, N. (2006). Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 29-32. https://doi.org/10.1016/j.molcatb.2006.03.005

West, A. H., Posarac, D., & Ellis, N. (2008). Assessment of four biodiesel production processes using HYSYS. Plant. Bioresource Technology, 99. https://doi.org/10.1016/j.biortech.2007.11.046

Wong, K. Y., Jo-Han, N., Chong, C. T., Lam, S. S., & Chong, W. T. (2019). Biodiesel process intensification through catalytic enhancement and emerging reactor designs: A critical review. Renewable and Sustainable Energy Reviews, 116, 109399. https://doi.org/10.1016/j.rser.2019.109399

Yang, L., Nieves-Remacha, M. J., & Jensen, K. F. (2017). Simulations and analysis of multiphase transport and reaction in segmented flow microreactors. Chemical Engineering Science, 169, 106–116. https://doi.org/10.1016/j.ces.2016.12.003

Yin, X., Duan, X., You, Q., Dai, C., Tan, Z., & Zhu, X. (2016). Biodiesel production from soybean oil deodorizer distillate using calcined duck egg shell as catalyst. Energy Conversion and Management, 112, 199-207. https://doi.org/10.1016/j.enconman.2016.01.026

Yusuf, N. N. A. N., Kamarudin, S. K., & Yaakub, Z. (2011). Overview on the current trends in biodiesel production. Energy Conversion and Management, 52(7), 2741-2751. https://doi.org/10.1016/j.enconman.2010.12.004

Zhang, Y., Dube, M., McLean, D., & Kates, M. (2003a). Biodiesel production from waste cooking oil: 1. Process Design and Technological Assessment. Bioresource Technology, 89(1), 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3

Zhang, Y., Dube, M. A., McLean, D. D., & Kates, M. (2003b). Biodiesel production from waste cooking oil: 2. Economic Assessment and Sensitivity Analysis. Bioresource Technology, 90(3), 229–240. https://doi.org/10.1016/S0960-8524(03)00150-0

Descargas

Publicado

26/05/2021

Cómo citar

ALMEIDA, L. A. de; VILAS BÔAS, R. N.; MENDES, M. F. Simulación de proceso de producción de biodiesel a partir de destilado de desodorización de aceites vegetales utilizando hidrotalcita-hidroxiapatita como catalizador. Research, Society and Development, [S. l.], v. 10, n. 6, p. e15210615452, 2021. DOI: 10.33448/rsd-v10i6.15452. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15452. Acesso em: 21 nov. 2024.

Número

Sección

Ingenierías