Correlación de la liberación de Nogo A con la formación de cicatrices gliales en la lesión de la médula espinal
DOI:
https://doi.org/10.33448/rsd-v10i6.15688Palabras clave:
Curación; Neuroglia,; Modelos animales.; Modelos animalesResumen
Ya se han identificado varios inhibidores del crecimiento axonal después de una lesión de la médula espinal, siendo los más conocidos proteínas derivadas de la mielina, como Nogo-A. El presente estudio tuvo como objetivo correlacionar la formación de cicatrices gliales con el comienzo de la liberación del inhibidor del crecimiento. Axonal Nogo-A en ratas previamente sometidas a lesión medular por compresión. Para ello, se dividieron 12 ratas Wistar macho y hembra (250 ± 50g) en 3 grupos de 4 animales cada uno, según el tiempo de eutanasia de los animales tras la lesión medular (G3 - tres días; G5 - cinco días; G7 - siete días). Las lesiones medulares se indujeron mediante laminectomía dorsal de la vértebra T10 y compresión epidural. Se realizó la evaluación histopatológica y la inmunorreactividad del inhibidor del crecimiento axonal Nogo-A. Se observó que hubo liberación del inhibidor axonal Nogo-A a las 24 h de ocurrida la lesión medular, y que la cicatriz glial debe mantenerse, en este intervalo de tiempo, para garantizar el reequilibrio del postraumatismo. ambiente. Así, se sugiere que la cicatriz glial se mantenga en la fase aguda de la lesión, garantizando sus numerosos beneficios para el reequilibrio del ambiente post-lesionado y, a las 24 horas, cuando comience la liberación del inhibidor del crecimiento axonal estudiado, debería ser eliminado.
Citas
Adams, K. L., & Gallo, V. (2018). The diversity and disparity of the glial scar. Nature neuroscience, 21(1), 9–15. https://doi.org/10.1038/s41593-017-0033-9
Alibardi L. (2020). NOGO-A immunolabeling is present in glial cells and some neurons of the recovering lumbar spinal cord in lizards. Journal of morphology, 281(10), 1260–1270. https://doi.org/10.1002/jmor.21245
Aslam, A. F., Aslam, A. K., Vasavada, B. C., & Khan, I. A. (2006). Cardiac effects of acute myelitis. International journal of cardiology, 111(1), 166–168. https://doi.org/10.1016/j.ijcard.2005.06.018
Carwardine, D., Prager, J., Neeves, J., Muir, E. M., Uney, J., Granger, N., & Wong, L. F. (2017). Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury. PloS one, 12(12), e0188967. https://doi.org/10.1371/journal.pone.0188967
Gajic, O., & Manno, E. M. (2007). Neurogenic pulmonary edema: another multiple-hit model of acute lung injury. Critical care medicine, 35(8), 1979–1980. https://doi.org/10.1097/01.CCM.0000277254.12230.7D
Glass, E.N. & Kent, M. (2007) Neurologic System Emergencies. In A. Battaglia, Small Animal Emergency And Critical Care For Veterinary Technicians. Saunders, ed. 2.
Huang, L., Wu, Z. B., Zhuge, Q., Zheng, W., Shao, B., Wang, B., Sun, F., & Jin, K. (2014). Glial scar formation occurs in the human brain after ischemic stroke. International journal of medical sciences, 11(4), 344–348. https://doi.org/10.7150/ijms.8140
Huang, J. Y., Wang, Y. X., Gu, W. L., Fu, S. L., Li, Y., Huang, L. D., Zhao, Z., Hang, Q., Zhu, H. Q., & Lu, P. H. (2012). Expression and function of myelin-associated proteins and their common receptor NgR on oligodendrocyte progenitor cells. Brain research, 1437, 1–15. https://doi.org/10.1016/j.brainres.2011.12.008
Lee, B. B., Cripps, R. A., Fitzharris, M., & Wing, P. C. (2014). The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal cord, 52(2), 110–116. https://doi.org/10.1038/sc.2012.158
Li, Y., He, X., Kawaguchi, R., Zhang, Y., Wang, Q., Monavarfeshani, A., Yang, Z., Chen, B., Shi, Z., Meng, H., Zhou, S., Zhu, J., Jacobi, A., Swarup, V., Popovich, P. G., Geschwind, D. H., & He, Z. (2020). Microglia-organized scar-free spinal cord repair in neonatal mice. Nature, 587(7835), 613–618. https://doi.org/10.1038/s41586-020-2795-6
Meyer, F.; Vialle, L.R.; Vialle, E.N.; Bleggi-Torres, L.F.; Rasera, E.; Leonel, I.(2013) Alterações vesicais na lesão medular experimental em ratos. ActaCirurgicaBrasileira, 18(3), 112-119.
NATIONAL SPINAL CORD INJURY STATISTICAL CENTER, N.S.C.I.S. Annual report for the spinal cord injury model system, 2014.
Rolls, A., Shechter, R., & Schwartz, M. (2009). The bright side of the glial scar in CNS repair. Nature reviews. Neuroscience, 10(3), 235–241. https://doi.org/10.1038/nrn2591
Šedý, J., Zicha, J., Kunes, J., Jendelová, P., & Syková, E. (2009). Rapid but not slow spinal cord compression elicits neurogenic pulmonary edema in the rat. Physiological research, 58(2), 269–277. https://doi.org/10.33549/physiolres.931508
Sofroniew M. V. (2005). Reactive astrocytes in neural repair and protection. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 11(5), 400–407. https://doi.org/10.1177/1073858405278321
Sun, X., Kong, Q., Sun, K., Huan, L., Xu, X., Sun, J., & Shi, J. (2020). Expression of Nogo-A in dorsal root ganglion in rats with cauda equina injury. Biochemical and biophysical research communications, 527(1), 131–137. https://doi.org/10.1016/j.bbrc.2020.04.094
Tang B. L. (2020). Nogo-A and the regulation of neurotransmitter receptors. Neural regeneration research, 15(11), 2037–2038. https://doi.org/10.4103/1673-5374.282250
Wang, J. W., Yang, J. F., Ma, Y., Hua, Z., Guo, Y., Gu, X. L., & Zhang, Y. F. (2015). Nogo-A expression dynamically varies after spinal cord injury. Neural regeneration research, 10(2), 225–229. https://doi.org/10.4103/1673-5374.152375
Yang, T., Dai, Y., Chen, G., & Cui, S. (2020). Corrigendum: Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Frontiers in cellular neuroscience, 14, 270. https://doi.org/10.3389/fncel.2020.00270
Zhang, L., Lei, Z., Guo, Z., Pei, Z., Chen, Y., Zhang, F., Cai, A., Mok, G., Lee, G., Swaminathan, V., Wang, F., Bai, Y., & Chen, G. (2020). Development of Neuroregenerative Gene Therapy to Reverse Glial Scar Tissue Back to Neuron-Enriched Tissue. Frontiers in cellular neuroscience, 14, 594170. https://doi.org/10.3389/fncel.2020.594170
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Juliana Casanovas de Carvalho; César Augusto Abreu-Pereira; Lucas Cauê da Silva Assunção; Rosana Costa Casanovas; Ana Lucia Abreu-Silva; Matheus Levi Tajra Feitosa
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.