Evaluación de la resistencia a la fractura de premolares maxilares tratados endodónticamente restaurados con diferentes materiales de restauración: Un estudio in vitro
DOI:
https://doi.org/10.33448/rsd-v10i7.16150Palabras clave:
Odontología Restauradora Avanzada; Composicion; Adhesión dental; Preparación de la cavidad dental; Restauración dental; Restauración temporal; Fallo de restauración dental.Resumen
Objetivo: En este estudio se evaluó la resistencia a la fractura de premolares maxilares tratados endodónticamente restaurados con diferentes materiales restauradores. Métodos: Sesenta premolares maxilares fueron sometidos a la misma preparación de cavidad mesio-oclusal-distal, tratamiento endodóntico y divididos en 5 grupos (n = 10): Grupo Coltosol - GCO restaurado con material de silicato de calcio; Grupo de cemento de ionómero de vidrio - GCIV, restaurado con Maxxion R; Cemento de ionómero de vidrio modificado - GCIM, restaurado con Gold Label 2; Grupo compuesto - GC, restaurado con Z100, y el grupo de control positivo (GP) - dejado sin restaurar. Un grupo permaneció intacto (n = 10) sirviendo como control negativo (GN). Las muestras se sometieron a pruebas de resistencia a la fractura mediante la máquina de prueba universal hasta que se produjo la fractura y se registró en newtons (N). El patrón de fractura se evaluó y describió como favorable o desfavorable. Los resultados se analizaron estadísticamente mediante un análisis de varianza de 1 vía y la prueba de Tukey post hoc con una diferencia estadística significativa a P <0,05. Resultados: Se encontraron mayores resultados de resistencia a la fractura para GC (1.128,35 ± 249,17), GCIM (1.250,77 ± 173,29) y GN (1.277,22 ± 433,44) (p <0,05). Se observaron fracturas más favorables en el GCO (6), GC (7) y GN (7) (p <0,05). Conclusión: Los dientes restaurados con composite y CIV modificado presentaron la misma resistencia que los dientes intactos. Los dientes restaurados con Coltosol y GIC presentaron una resistencia similar a los dientes no restaurados.
Citas
Atlas, A., Grandini, S., & Martignoni, M. (2019). Evidence-based treatment planning for the restoration of endodontically treated single teeth: importance of coronal seal, post vs no post, and indirect vs direct restoration. Quintessence Int (Berl), 50(10), 772-781.
Balkaya, H., Topçuoğlu, H. S., & Demirbuga, S. (2019). The Effect of Different Cavity Designs and Temporary Filling Materials on the Fracture Resistance of Upper Premolars. Journal of endodontics, 45(5), 628-633.
Braga, M. R., Messias, D. C., Macedo, L. M., Silva-Sousa, Y. C., & Gabriel, A. E. (2015). Rehabilitation of weakened premolars with a new polyfiber post and adhesive materials. Indian J Dent Res, 26(4), 400-5.
Daher, R., Ardu, S., Di Bella, E., Rocca, G. T., Feilzer, A. J., & Krejci, I. (2021). Fracture strength of non-invasively reinforced MOD cavities on endodontically treated teeth. Odontology, 109(2), 368-375.
Eapen, A. M., Amirtharaj, L. V., Sanjeev, K., & Mahalaxmi, S. (2017). Fracture resistance of endodontically treated teeth restored with 2 different fiber-reinforced composite and 2 conventional composite resin core buildup materials: an in vitro study. Journal of endodontics, 43(9), 1499-1504.
Fathi, B., Bahcall, J., & Maki, J. S. (2007). An in vitro comparison of bacterial leakage of three common restorative materials used as an intracoronal barrier. Journal of endodontics, 33(7), 872-874.
Ivancik, J., Majd, H., Bajaj, D., Romberg, E., & Arola, D. (2012). Contributions of aging to the fatigue crack growth resistance of human dentin. Acta biomaterialia, 8(7), 2737-2746.
Jensen, A. L., Abbott, P. V., & Salgado, J. C. (2007). Interim and temporary restoration of teeth during endodontic treatment. Australian dental journal, 52, S83-S99.
Karzoun, W., Abdulkarim, A., Samran, A., & Kern, M. (2015). Fracture strength of endodontically treated maxillary premolars supported by a horizontal glass fiber post: an in vitro study. Journal of endodontics, 41(6), 907-912.
Krishan, R., Paqué, F., Ossareh, A., Kishen, A., Dao, T., & Friedman, S. (2014). Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. Journal of endodontics, 40(8), 1160-1166.
Maske, A., Weschenfelder, V. M., Soares Grecca Vilella, F., Burnett Junior, L. H., & de Melo, T. A. F. (2021). Influence of access cavity design on fracture strength of endodontically treated lower molars. Australian Endodontic Journal, 47(1), 5-10.
Milani, A. S., Froughreyhani, M., Mohammadi, H., Tabegh, F. G., & Pournaghiazar, F. (2016). The effect of temporary restorative materials on fracture resistance of endodontically treated teeth. General dentistry, 64(1), e1-4.
Mincik, J., Urban, D., Timkova, S., & Urban, R. (2016). Fracture resistance of endodontically treated maxillary premolars restored by various direct filling materials: an in vitro study. International journal of biomaterials, 2016.
Mitra, S. B. (1991). Adhesion to dentin and physical properties of a light-cured glass-ionomer liner/base. Journal of Dental Research, 70(1), 72-74.
Moore, B., Verdelis, K., Kishen, A., Dao, T., & Friedman, S. (2016). Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars. Journal of endodontics, 42(12), 1779-1783.
Naseri, M., Ahangari, Z., Moghadam, M. S., & Mohammadian, M. (2012). Coronal sealing ability of three temporary filling materials. Iranian endodontic journal, 7(1), 20.
Ozsevik, A. S., Yildirim, C., Aydin, U., Culha, E., & Surmelioglu, D. (2016). Effect of fibre‐reinforced composite on the fracture resistance of endodontically treated teeth. Australian Endodontic Journal, 42(2), 82-87.
Pai, S. F., Yang, S. F., Sue, W. L., Chueh, L. H., & Rivera, E. M. (1999). Microleakage between endodontic temporary restorative materials placed at different times. Journal of endodontics, 25(6), 453-456.
Pakdeethai, S., Abuzar, M., & Parashos, P. (2013). Fracture patterns of glass–ionomer cement overlays versus stainless steel bands during endodontic treatment: an ex‐vivo study. International endodontic journal, 46(12), 1115-1124.
Plotino, G., Grande, N. M., Isufi, A., Ioppolo, P., Pedullà, E., Bedini, R., & Testarelli, L. (2017). Fracture strength of endodontically treated teeth with different access cavity designs. Journal of endodontics, 43(6), 995-1000.
Sadaf, D. (2020). Survival Rates of Endodontically Treated Teeth After Placement of Definitive Coronal Restoration: 8-Year Retrospective Study. Therapeutics and clinical risk management, 16, 125.
Sidhu, S. K., & Watson, T. F. (1995). Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. American Journal of Dentistry, 8(1), 59-67.
Silva, M. E. C. da, & Tolentino Júnior, D. S. (2021). Evaluation of coronary microleakage in temporary restorative materials used in endodontics. Research, Society and Development, 10(6), e22210615584.
Soares, C. J., Pizi, E. C. G., Fonseca, R. B., & Martins, L. R. M. (2005). Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Brazilian Oral Research, 19(1), 11-16.
Taha, N. A., Maghaireh, G. A., Bagheri, R., & Holy, A. A. (2015). Fracture strength of root filled premolar teeth restored with silorane and methacrylate-based resin composite. Journal of dentistry, 43(6), 735-741.
Tennert, C., Fischer, G. F., Vach, K., Woelber, J. P., Hellwig, E., & Polydorou, O. (2016). A temporary filling material during endodontic treatment may cause tooth fractures in two-surface class II cavities in vitro. Clinical oral investigations, 20(3), 615-620.
Tortopidis, D., Lyons, M. F., Baxendale, R. H., & Gilmour, W. H. (1998). The variability of bite force measurement between sessions, in different positions within the dental arch. Journal of oral rehabilitation, 25(9), 681-686.
Wilson, A. D., & Kent, B. E. (1971). The glass‐ionomer cement, a new translucent dental filling material. Journal of Applied Chemistry and Biotechnology, 21(11), 313-313.
Young, A. M. (2002). FTIR investigation of polymerisation and polyacid neutralisation kinetics in resin-modified glass-ionomer dental cements. Biomaterials, 23(15), 3289-3295.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Walber Maeda; Wayne Martins Nascimento; Marcelo Santos Coelho; Danilo de Luca Campos ; João Paulo Drumond ; Adriana de Jesus Soares; Marcos Frozoni
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.