Uso de aditivos para equilibrar la microbiota en los piensos comerciales para aves de corral: Revisión
DOI:
https://doi.org/10.33448/rsd-v10i7.16633Palabras clave:
Prebiótico; Probiótico; Resistencia bacteriana; Simbiótico.Resumen
Los antibióticos equilibradores de la microbiota se han utilizado en la alimentación animal desde la década de 1950, al promover beneficios para la salud de los animales, sin embargo, el uso prolongado de estos aditivos desencadenó el problema de la resistencia bacteriana, lo que llevó a los organismos mundiales y nacionales (OMS, UE, FDA y MAPA) a prohibir varios aditivos. Sin embargo, las aves de corral en los sistemas industriales están sometidas a entornos densos y desafiantes, lo que hace imposible eximir a la dieta de compuestos que modulen la microbiota intestinal y, en consecuencia, favorezcan beneficiosamente la digestibilidad y la absorción de los nutrientes de la dieta. En este aspecto, el uso de aditivos equilibradores de la microbiota alternativos a los antibióticos, como los prebióticos, los probióticos y los simbióticos, se hace indispensable, porque son naturales, no causan resistencia bacteriana y promueven beneficios mutuos para la salud animal. Así, esta revisión pretende dilucidar los beneficios de los aditivos equilibrantes de la microbiota en la alimentación de las aves ponedoras comerciales, haciendo hincapié en los efectos producidos a partir de la modulación de la microbiota residente. La metodología adoptada fue un estudio descriptivo, que dio lugar a una revisión bibliográfica basada en artículos científicos de todo el mundo.
Citas
Abd El‐Hack, M. E., El‐Saadony, M. T., Shafi, M. E., Qattan, S. Y. A., Batiha, G. E., Khafaga, A. F., Abdel‐Moneim, A. E., & Alagawany, M. (2020). Probiotics in poultry feed: A comprehensive review. Journal of Animal Physiology and Animal Nutrition, 104(6), 1835–1850. https://doi.org/10.1111/jpn.13454
Abdel-Moneim, A. M. E., Elbaz, A. M., Khidr, R. E. S., & Badri, F. B. (2019). Effect of in Ovo Inoculation of Bifidobacterium spp. on Growth Performance, Thyroid Activity, Ileum Histomorphometry, and Microbial Enumeration of Broilers. Probiotics and Antimicrobial Proteins, 12(3), 873–882. https://doi.org/10.1007/s12602-019-09613-x
Abdel-Wareth, A. A. A., Hammad, S., Khalaphallah, R., Salem, W. M., & Lohakare, J. (2019). Synbiotic as eco-friendly feed additive in diets of chickens under hot climatic conditions. Poultry Science, 98(10), 4575–4583. https://doi.org/10.3382/ps/pez115
AFRC, R. F. (1989). Probiotics in man and animals. Journal of Applied Bacteriology, 66(5), 365–378. https://doi.org/10.1111/jam.1989.66.issue-5
Akbaryan, M., Mahdavi, A., Jebelli-Javan, A., Staji, H., & Darabighane, B. (2019). A comparison of the effects of resistant starch, fructooligosaccharide, and zinc bacitracin on cecal short-chain fatty acids, cecal microflora, intestinal morphology, and antibody titer against Newcastle disease virus in broilers. Comparative Clinical Pathology, 28(3), 661–667. https://doi.org/10.1007/s00580-019-02936-9
Al-Khalaifah, H. S. (2018). Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poultry Science, 97(11), 3807–3815. https://doi.org/10.3382/ps/pey160
Alagawany, M., Abd El-Hack, M. E., Farag, M. R., Sachan, S., Karthik, K., & Dhama, K. (2018). The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environmental Science and Pollution Research, 25(11), 10611–10618. https://doi.org/10.1007/s11356-018-1687-x
Alavi, S. A. N., Zakeri, A., Kamrani, B., & Pourakbari, Y. (2012). Effect of prebiotics, probiotics, acidfire, growth promoter antibiotics and synbiotic on humural immunity of broiler chickens. Global Veterinaria, 8(6), 612–617.
Alloui, M. N., Szczurek, W., & Światkiewicz, S. (2013). The usefulness of prebiotics and probiotics in modern poultry nutrition: A review. Annals of Animal Science, 13(1), 17–32. https://doi.org/10.2478/v10220-012-0055-x
Antonialli, R. (2013). Efeito de ligantes de receptores semelhantes a Toll na resposta imune induzidas por antígenos direcionados ao DEC205 e DCIR2. Universidade de São Paulo.
Atabaigi Elmi, V., Moradi, S., Ghazi, S., & Rahimi, M. (2020). Effects of Lactobacillus acidophilus and natural antibacterials on growth performance and Salmonella colonization in broiler chickens challenged with Salmonella enteritidis. Livestock Science, 233(January), 103948. https://doi.org/10.1016/j.livsci.2020.103948
Barbosa, T. M., Serra, C. R., La Ragione, R. M., Woodward, M. J., & Henriques, A. O. (2005). Screening for Bacillus Isolates in the Broiler Gastrointestinal Tract. Applied and Environmental Microbiology, 71(2), 968–978. https://doi.org/10.1128/AEM.71.2.968-978.2005
Bengmark, S. (2005). Bioecologic control of the gastrointestinal tract: The role of flora and supplemented probiotics and synbiotics. Gastroenterology Clinics of North America, 34(3), 413–436. https://doi.org/10.1016/j.gtc.2005.05.002
Bilal, M., Si, W., Barbe, F., Chevaux, E., Sienkiewicz, O., & Zhao, X. (2020). Effects of novel probiotic strains of Bacillus pumilus and Bacillus subtilis on production, gut health, and immunity of broiler chickens raised under suboptimal conditions. Poultry Science, 100(3), 100871. https://doi.org/10.1016/j.psj.2020.11.048
Bindels, L. B., Delzenne, N. M., Cani, P. D., & Walter, J. (2015). Towards a more comprehensive concept for prebiotics. Nature Reviews: Gastroenterology and Hepatology, 12(5), 303–310. https://doi.org/10.1038/nrgastro.2015.47
Bovo, F., Franco, L. T., Kobashigawa, E., Rottinghaus, G. E., Ledoux, D. R., & Oliveira, C. A. F. (2015). Efficacy of beer fermentation residue containing Saccharomyces cerevisiae cells for ameliorating aflatoxicosis in broilers. Poultry Science, 94(5), 934–942. https://doi.org/10.3382/ps/pev067
Bunesova, V., Vlkova, E., Rada, V., Killer, J., & Musilova, S. (2014). Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Beneficial Microbes, 5(4), 377–388. https://doi.org/10.3920/BM2013.0081
Butta, H., Sardana, R., Vaishya, R., Singh, K. N., & Mendiratta, L. (2017). Bifidobacterium: An emerging clinically significant metronidazole-resistant anaerobe of mixed pyogenic infections. Cureus, 9(4), 4–9. https://doi.org/10.7759/cureus.1134
BRASIL. 2015. Ministério da Agricultura, Pecuária e Abastecimento/Secretaria de Defesa Agropecuária. Instrução Normativa nº 44, de 15 de dezembro de 2015: Regulamento técnico sobre aditivos para produtos destinados à alimentação animal.
BRASIL. 2020. Ministério da Agricultura, Pecuária e Abastecimento/Secretaria de Defesa Agropecuária. Instrução Normativa nº 1, de 13 de janeiro de 2020: Proibição em território nacional de aditivos melhoradores de desempenho que contenham antimicrobianos classificados como importantes na medicina humana.
Carr, F. J., Chill, D., & Maida, N. (2002). The lactic acid bacteria: A literature survey. Critical Reviews in Microbiology, 28(4), 281–370. https://doi.org/10.1080/1040-840291046759
Castañeda, C. D., Dittoe, D. K., Wamsley, K. G. S., McDaniel, C. D., Blanch, A., Sandvang, D., & Kiess, A. S. (2020). In ovo inoculation of an Enterococcus faecium–based product to enhance broiler hatchability, live performance, and intestinal morphology. Poultry Science, 99(11), 6163–6172. https://doi.org/10.1016/j.psj.2020.08.002
Castanon, J. I. R. 2007. History of the use of antibiotic as growth promoters in european poultry feeds. Poultry Science, 86(11), 2466-2471.
Cheng, G., Dai, M., Ahmed, S., Hao, H., Wang, X., & Yuan, Z. (2016). Antimicrobial drugs in fighting against antimicrobial resistance. Frontiers in Microbiology, 7(APR), 1–11. https://doi.org/10.3389/fmicb.2016.00470
Corrigan, A., De Leeuw, M., Penaud-Frézet, S., Dimova, D., & Murphya, R. A. (2015). Phylogenetic and functional alterations in bacterial community compositions in broiler ceca as a result of mannan oligosaccharide supplementation. Applied and Environmental Microbiology, 81(10), 3460–3470. https://doi.org/10.1128/AEM.04194-14
Crisol-Martínez, E., Stanley, D., Geier, M. S., Hughes, R. J., & Moore, R. J. (2017). Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens. Applied Microbiology and Biotechnology, 101(11), 4547–4559. https://doi.org/10.1007/s00253-017-8193-9
Dean, S. N., Rimmer, M. A., Turner, K. B., Phillips, D. A., Caruana, J. C., Hervey, W. J., Leary, D. H., & Walper, S. A. (2020). Lactobacillus acidophilus membrane vesicles as a vehicle of bacteriocin delivery. Frontiers in Microbiology, 11(April), 1–14. https://doi.org/10.3389/fmicb.2020.00710
Deleu, M., Paquot, M., & Nylander, T. (2008). Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophysical Journal, 94(7), 2667–2679. https://doi.org/10.1529/biophysj.107.114090
Diaz, T. G., Branco, A. F., Jacovaci, F. A., Jobim, C. C., Daniel, J. L. P., Bueno, A. V. I., & Ribeiro, M. G. (2018). Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLOS ONE, 13(11), 1–15. https://doi.org/10.1371/journal.pone.0207127
Didari, T., Solki, S., Mozaffari, S., Nikfar, S., & Abdollahi, M. (2014). A systematic review of the safety of probiotics. Expert Opinion on Drug Safety, 13(2), 227–239. https://doi.org/10.1517/14740338.2014.872627
El-Moneim, A. E. M. E. A., El-Wardany, I., Abu-Taleb, A. M., Wakwak, M. M., Ebeid, T. A., & Saleh, A. A. (2019). Assessment of in ovo administration of Bifidobacterium bifidum and Bifidobacterium longum on performance, ileal histomorphometry, blood hematological, and biochemical parameters of broilers. Probiotics and Antimicrobial Proteins, 12(2), 439–450. https://doi.org/10.1007/s12602-019-09549-2
Elghandour, M. M. Y., Tan, Z. L., Abu Hafsa, S. H., Adegbeye, M. J., Greiner, R., Ugbogu, E. A., Cedillo Monroy, J., & Salem, A. Z. M. (2019). Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo‐ruminant feeding: a review. Journal of Applied Microbiology, 128(3), 658–674. https://doi.org/10.1111/jam.14416
Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C., & Panwar, H. (2017). Bacillus as potential probiotics: Status, concerns, and future perspectives. Frontiers in Microbiology, 8(AUG), 1–15. https://doi.org/10.3389/fmicb.2017.01490
Estrada, A., Wilkie, D. C., & Drew, M. (2001). Administration of Bifidobacterium bifidum to chicken broilers reduces the number of carcass condemnations for cellulitis at the abattoir. Journal of Applied Poultry Research, 10(4), 329–334. https://doi.org/10.1093/japr/10.4.329
FAO. 2016. Probiotics in animal nutrition. Physiological reviews, 34(1), 1 –108.
FDA. 2018. Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Center for Veterinary Medicine 7(0) 1–25.
Feitosa, T. J. de O., Silva, C. E. da, Souza, R. G. de, Lima, C. D. S., Gurgel, A. de C., Oliveira, L. L. G. de, Nóbrega, J. G. S. da, Carvalho Júnior, J. E. M. de, Melo, F. de O. de, Santos, W. B. M. dos, Feitoza, T. de O., Costa, T. F., Brandão, P. A., & Minafra, C. S. (2020). Intestinal microbiota of poultry: bibliographic review. Research, Society and Development, 9(5), e42952779. https://doi.org/10.33448/rsd-v9i5.2779
Figueira, S. V. (2013). Microbiota intestinal das aves de produção [Universidade Federal de Goiás]. http://www.conhecer.org.br/enciclop/2014a/AGRARIAS/microbiota.pdf
Fiore, E., Van Tyne, D., & Gilmore, M. S. (2019). Pathogenicity of Enterococci. Microbiology Spectrum, 7(4), 189–211. https://doi.org/10.1128/microbiolspec.GPP3-0053-2018
Forte, C., Acuti, G., Manuali, E., Casagrande Proietti, P., Pavone, S., Trabalza-Marinucci, M., Moscati, L., Onofri, A., Lorenzetti, C., & Franciosini, M. P. (2016). Effects of two different probiotics on microflora, morphology, and morphometry of gut in organic laying hens. Poultry Science, 95(11), 2528–2535. https://doi.org/10.3382/ps/pew164
Forte, C., Manuali, E., Abbate, Y., Papa, P., Vieceli, L., Tentellini, M., Trabalza-Marinucci, M., & Moscati, L. (2018). Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens. Poultry Science, 97(3), 930–936. https://doi.org/10.3382/ps/pex396
Gadde, U., Kim, W. H., Oh, S. T., & Lillehoj, H. S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Animal Health Research Reviews, 18(1), 26–45. https://doi.org/10.1017/S1466252316000207
Gao, Z., Wu, H., Shi, L., Zhang, X., Sheng, R., Yin, F., & Gooneratne, R. (2017). Study of Bacillus subtilis on growth performance, nutrition metabolism and intestinal microflora of 1 to 42 d broiler chickens. Animal Nutrition, 3(2), 109–113. https://doi.org/10.1016/j.aninu.2017.02.002
García-Solache, M., & Rice, L. B. (2019). The Enterococcus: a Model of Adaptability to Its Environment. Clinical Microbiology Reviews, 32(2), 1–28. https://doi.org/10.1128/CMR.00058-18
Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401
Goldstein, E. J. C., Tyrrell, K. L., & Citron, D. M. (2015). Lactobacillus species: Taxonomic complexity and controversial susceptibilities. Clinical Infectious Diseases, 60(Suppl 2), S98–S107. https://doi.org/10.1093/cid/civ072
Gomes, A. M. P., & Malcata, F. X. (1999). Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Science & Technology, 10(4–5), 139–157. https://doi.org/10.1016/S0924-2244(99)00033-3
Gonzales, E., Mello, H. H. D. C., & Café, M. B. (2012). Uso de antibióticos promotores de crescimento na alimentação e produção animal. Revista UFG, 13, 48–53. https://www.proec.ufg.br/up/694/o/13_07.pdf
Grant, A., Gay, C. G., & Lillehoj, H. S. (2018). Bacillus spp . as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathology, 47(4), 339–351. https://doi.org/10.1080/03079457.2018.1464117
Hanchi, H., Mottawea, W., Sebei, K., & Hammami, R. (2018). The genus Enterococcus: Between probiotic potential and safety concerns—an update. Frontiers in Microbiology, 9(AUG), 1–16. https://doi.org/10.3389/fmicb.2018.01791
Hancock, R. E. W., & Chapple, D. S. (1999). Peptide Antibiotics. Antimicrobial Agents and Chemotherapy, 43(6), 1317–1323. https://doi.org/10.1128/AAC.43.6.1317
Hegarty, J. W., Guinane, C. M., Ross, R. P., Hill, C., & Cotter, P. D. (2017). Lack of heterogeneity in bacteriocin production across a selection of commercial probiotic products. Probiotics and Antimicrobial Proteins, 9(4), 459–465. https://doi.org/10.1007/s12602-017-9326-2
Iannitti, T., & Palmieri, B. (2010). Therapeutical use of probiotic formulations in clinical practice. Clinical Nutrition, 29(6), 701–725. https://doi.org/10.1016/j.clnu.2010.05.004
Jha, R., Das, R., Oak, S., & Mishra, P. (2020). Probiotics (Direct‐fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. In Animals (Vol. 10, Número 10, p. 1–19). https://doi.org/10.3390/ani10101863
Khan, H., Flint, S., & Yu, P.-L. (2010). Enterocins in food preservation. International Journal of Food Microbiology, 141(1–2), 1–10. https://doi.org/10.1016/j.ijfoodmicro.2010.03.005
Klaenhammer, T. R., & Kullen, M. J. (1999). Selection and design of probiotics. International Journal of Food Microbiology, 50(1–2), 45–57. https://doi.org/10.1016/S0168-1605(99)00076-8
Kuritza, L. N., Westphal, P., & Santin, E. (2014). Probiotics on poultry production. Ciência Rural, 44(8), 1457–1465. https://doi.org/10.1590/0103-8478cr20120220
Lan, R. X., Lee, S. I., & Kim, I. H. (2017). Effects of Enterococcus faecium SLB 120 on growth performance, blood parameters, relative organ weight, breast muscle meat quality, excreta microbiota shedding, and noxious gas emission in broilers. Poultry Science, 96(9), 3246–3253. https://doi.org/10.3382/ps/pex101
Leahy, S. C., Higgins, D. G., Fitzgerald, G. F., & Sinderen, D. (2005). Getting better with bifidobacteria. Journal of Applied Microbiology, 98(6), 1303–1315. https://doi.org/10.1111/j.1365-2672.2005.02600.x
Lebreton, F., Willems, R. J. L., & Gilmore, M. S. (2014). Enterococcus diversity, origins in nature, and gut colonization. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection, 1–59. http://www.ncbi.nlm.nih.gov/pubmed/24649513
Lee, H., & Kim, H. Y. (2011). Lantibiotics, class I Bacteriocins from the genus Bacillus. Journal of Microbiology and Biotechnology, 21(3), 229–235. https://doi.org/10.4014/jmb.1010.10017
Lee, J.-H., & O’Sullivan, D. J. (2010). Genomic insights into bifidobacteria. Microbiology and Molecular Biology Reviews, 74(3), 378–416. https://doi.org/10.1128/MMBR.00004-10
Lemos, M. J. de, Calixto, L. F. L., Torres-Cordido, K. A. A., & Reis, T. L. (2016). Uso de aditivo alimentar equilibrador da flora intestinal em aves de corte e de postura. Arquivos do Instituto Biológico, 83(0), 1–7. https://doi.org/10.1590/1808-1657000862014
Li, Z., Wang, W., Liu, D., & Guo, Y. (2018). Effects of Lactobacillus acidophilus on the growth performance and intestinal health of broilers challenged with Clostridium perfringens. Journal of Animal Science and Biotechnology, 9(1), 25. https://doi.org/10.1186/s40104-018-0243-3
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: Growth-promoting factors produced by microorganisms. Science, 147(3659), 747–748. https://doi.org/10.1126/science.147.3659.747
Luoma, A., Markazi, A., Shanmugasundaram, R., Murugesan, G. R., Mohnl, M., & Selvaraj, R. (2017). Effect of synbiotic supplementation on layer production and cecal Salmonella load during a Salmonella challenge. Poultry Science, 96(12), 4208–4216. https://doi.org/10.3382/ps/pex251
Macedo, L. L., Vimercati, W. C., & Araújo, C. da S. (2020). Fruto-oligossacarídeos: aspectos nutricionais, tecnológicos e sensoriais. Brazilian Journal of Food Technology, 23, 1–9. https://doi.org/10.1590/1981-6723.08019
Maget-Dana, R., & Peypoux, F. (1994). Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 87(1–3), 151–174. https://doi.org/10.1016/0300-483X(94)90159-7
Mannu, L., Paba, A., Daga, E., Comunian, R., Zanetti, S., Duprè, I., & Sechi, L. A. (2003). Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. International Journal of Food Microbiology, 88(2–3), 291–304. https://doi.org/10.1016/S0168-1605(03)00191-0
Markowiak, P., & Śliżewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10(1), 21. https://doi.org/10.1186/s13099-018-0250-0
Matur, E., Ergul, E., Akyazi, I., Eraslan, E., & Cirakli, Z. T. (2010). The effects of Saccharomyces cerevisiae extract on the weight of some organs, liver, and pancreatic digestive enzyme activity in breeder hens fed diets contaminated with aflatoxins. Poultry Science, 89(10), 2213–2220. https://doi.org/10.3382/ps.2010-00821
Menconi, A., Wolfenden, A. D., Shivaramaiah, S., Terraes, J. C., Urbano, T., Kuttel, J., Kremer, C., Hargis, B. M., & Tellez, G. (2011). Effect of lactic acid bacteria probiotic culture for the treatment of Salmonella enterica serovar Heidelberg in neonatal broiler chickens and Turkey poults. Poultry Science, 90(3), 561–565. https://doi.org/10.3382/ps.2010-01220
Mesquita, A. R. C. de, Silveira, L. P. da M., Cruz Filho, I. J. Da, Lima, V. F. de, Silveira Filho, V. D. M., Araujo, A. A., Silva, T. L. Da, Araújo, K. D. F., & Macedo, L. D. S. (2017). Metabolism and physiology of Lactobacilli: a review. Journal of Environmental Analysis and Progress, 2(2), 125–136. https://doi.org/10.24221/jeap.2.2.2017.1202.115-124
Mohammed, A. A., Jiang, S., Jacobs, J. A., & Cheng, H. W. (2019). Effect of a synbiotic supplement on cecal microbial ecology, antioxidant status, and immune response of broiler chickens reared under heat stress. Poultry Science, 98(10), 4408–4415. https://doi.org/10.3382/ps/pez246
Morales-Lopez, R., & Brufau, J. (2013). Immune-modulatory effects of dietary Saccharomyces cerevisiae cell wall in broiler chickens inoculated with Escherichia coli lipopolysaccharide. British Poultry Science, 54(2), 247–251. https://doi.org/10.1080/00071668.2013.782386
O’Donnell, J. A., Gelone, S. P., & Safdar, A. (2014). Topical Antibacterials. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (Eighth Edi, Vol. 1, p. 452–462). Elsevier Inc. https://doi.org/10.1016/B978-1-4557-4801-3.00037-0
Ozogul, F., & Hamed, I. (2016). Lactic Acid Bacteria: Lactobacillus spp.: Lactobacillus acidophilus. In Reference Module in Food Science (p. 1–10). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.00852-0
Palma, M. L., Zamith-Miranda, D., Martins, F. S., Bozza, F. A., Nimrichter, L., Montero-Lomeli, M., Marques, E. T. A., & Douradinha, B. (2015). Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement? Applied Microbiology and Biotechnology, 99(16), 6563–6570. https://doi.org/10.1007/s00253-015-6776-x
Park, S. H., Perrotta, A., Hanning, I., Diaz-Sanchez, S., Pendleton, S., Alm, E., & Ricke, S. C. (2017). Pasture flock chicken cecal microbiome responses to prebiotics and plum fiber feed amendments. Poultry Science, 96(6), 1820–1830. https://doi.org/10.3382/ps/pew441
Pavli, V., & Kmetec, V. (2006). Pathways of chemical degradation of polypeptide antibiotic bacitracin. Biological & Pharmaceutical Bulletin, 29(11), 2160–2167. https://doi.org/10.1248/bpb.29.2160
Pender, C. M., Kim, S., Potter, T. D., Ritzi, M. M., Young, M., & Dalloul, R. A. (2016). In ovo supplementation of probiotics and its effects on performance and immune-related gene expression in broiler chicks. Poultry Science, 96(5), 1052–1062. https://doi.org/10.3382/ps/pew381
Penha Filho, R. A. C., Díaz, S. J. A., Fernando, F. S., Chang, Y.-F., Andreatti Filho, R. L., & Berchieri Junior, A. (2015). Immunomodulatory activity and control of Salmonella Enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic. Veterinary Immunology and Immunopathology, 167(1–2), 64–69. https://doi.org/10.1016/j.vetimm.2015.06.006
PICARD, C., FIORAMONTI, J., FRANCOIS, A., ROBINSON, T., NEANT, F., & MATUCHANSKY, C. (2005). Review article: bifidobacteria as probiotic agents - physiological effects and clinical benefits. Alimentary Pharmacology and Therapeutics, 22(6), 495–512. https://doi.org/10.1111/j.1365-2036.2005.02615.x
Pourabedin, M., & Zhao, X. (2015). Prebiotics and gut microbiota in chickens. FEMS Microbiology Letters, 362(15), fnv122. https://doi.org/10.1093/femsle/fnv122
Puppala, K. R., Ravi Kumar, V., Khire, J., & Dharne, M. (2018). Dephytinizing and probiotic potentials of Saccharomyces cerevisiae (NCIM 3662) strain for amelioration of nutritional quality of functional foods. Probiotics and Antimicrobial Proteins, 11(2), 604–617. https://doi.org/10.1007/s12602-018-9394-y
Raghuwanshi, S., Misra, S., Sharma, R., & Bisen, P. S. (2015). Indian perspective for probiotics : A review. Indian J Dairy Sci, 68(3), 195–205.
Raizel, R., Santini, E., Kopper, A. M., & Reis Filho, A. D. (2011). Effects of probiotics, prebiotics and synbiotics consumption on the human organism organism. Ciência & Saúde, 4(2), 66–74. https://doi.org/10.15448/1983-652X.2011.2.8352
Reis, T. L., & Vieites, F. M. (2019). Antibiótico, prebiótico, probiótico e simbiótico em rações de frangos de corte e galinhas poedeiras. Ciência Animal, 29(3), 133–147.
Ricke, S. C. (2015). Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poultry Science, 94(6), 1411–1418. https://doi.org/10.3382/ps/pev049
Ricke, Steven C., Lee, S. I., Kim, S. A., Park, S. H., & Shi, Z. (2020). Prebiotics and the poultry gastrointestinal tract microbiome. Poultry Science, 99(2), 670–677. https://doi.org/10.1016/j.psj.2019.12.018
Romero-Luna, H. E., Hernández-Sánchez, H., Ribas-Aparicio, R. M., Cauich-Sánchez, P. I., & Dávila-Ortiz, G. (2018). Evaluation of the probiotic potential of Saccharomyces cerevisiae strain (C41) isolated from tibicos by in vitro studies. Probiotics and Antimicrobial Proteins, 11(3), 794–800. https://doi.org/10.1007/s12602-018-9471-2
Roselli, M., Finamore, A., Britti, M. S., Bosi, P., Oswald, I., & Mengheri, E. (2005). Alternatives to in-feed antibiotics in pigs: Evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Animal Research, 54(3), 203–218. https://doi.org/10.1051/animres:2005012
Salminen, S., Bouley, C., Boutron, M.-C., Cummings, J. H., Franck, A., Gibson, G. R., Isolauri, E., Moreau, M.-C., Roberfroid, M., & Rowland, I. (1998). Functional food science and gastrointestinal physiology and function. British Journal of Nutrition, 80(S1), S147–S171. https://doi.org/10.1079/bjn19980108
Santos, J. B. dos. (2018). Seleção de estirpes de Bacillus spp. tóxicas a Meloidogyne spp. e promotoras de crescimento vegetal. Universidade de Brasília.
Schmitt, J. A. D. (2014). Avaliação do perfil probiótico de cepas de Lactobacillus acidophilus destinados a aplicações farmacêuticas e alimentícias. Universidade Estadual do Oeste do Paraná.
Shah, N., & Rajiv, D. (2002). Antimicrobial lactic substances including bacteriocins produced by acid bacteria. Bioscience Microflora, 21(4), 217–223.
Shang, Y., Kumar, S., Thippareddi, H., & Kim, W. K. (2018). Effect of dietary fructooligosaccharide (FOS) supplementation on ileal microbiota in broiler chickens. Poultry Science, 97(10), 3622–3634. https://doi.org/10.3382/ps/pey131
Silva, E. N. da, & Filho, R. L. A. (2000). Probióticos E Prebióticos Na Avicultura. Simpósio de Sanidade Avícola, 2, 45–55.
Silva, J. D. T., Matos, A. D. S., Hada, F. H., Gravena, R. A., Marques, R. H., & Moraes, V. M. B. (2012). Simbiótico e extratos naturais na dieta de codornas japonesas na fase de postura. Ciência Animal Brasileira, 13(1), 1–7. https://doi.org/10.5216/cab.v13i1.5547
Soccol, C. R., Vandenberghe, L. P. de S., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., De Dea Lindner, J., Pandey, A., & Thomaz-Soccol, V. (2010). The potential of probiotics: A review. Food Technology and Biotechnology, 48(4), 413–434.
Sumi, C. D., Yang, B. W., Yeo, I. C., & Hahm, Y. T. (2015). Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Canadian Journal of Microbiology, 61(2), 93–103. https://doi.org/10.1139/cjm-2014-0613
Swanson, K. S., Gibson, G. R., Hutkins, R., Reimer, R. A., Reid, G., Verbeke, K., Scott, K. P., Holscher, H. D., Azad, M. B., Delzenne, N. M., & Sanders, M. E. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology & Hepatology, 17(11), 687–701. https://doi.org/10.1038/s41575-020-0344-2
Świątkiewicz, S., Arczewska-Włosek, A., & Józefiak, D. (2014). Immunomodulatory efficacy of yeast cell products in poultry: a current review. World’s Poultry Science Journal, 70(1), 57–68. https://doi.org/10.1017/S0043933914000051
Tabasco, R., García-Cayuela, T., Peláez, C., & Requena, T. (2009). Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria. International Journal of Food Microbiology, 132(2–3), 109–116. https://doi.org/10.1016/j.ijfoodmicro.2009.04.004
Tannock, G. W., Munro, K., Harmsen, H. J. M., Welling, G. W., Smart, J., & Gopal, P. K. (2000). Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosusDR20. Applied and Environmental Microbiology, 66(6), 2578–2588. https://doi.org/10.1128/AEM.66.6.2578-2588.2000
Teng, P.-Y., & Kim, W. K. (2018). Review: Roles of prebiotics in intestinal ecosystem of broilers. Frontiers in Veterinary Science, 5(OCT), 1–18. https://doi.org/10.3389/fvets.2018.00245
Thema, K., Mlambo, V., Snyman, N., & Mnisi, C. M. (2019). Evaluating Alternatives to Zinc-Bacitracin Antibiotic Growth Promoter in Broilers: Physiological and Meat Quality Responses. Animals, 9(12), 1160. https://doi.org/10.3390/ani9121160
Tiwari, G., Tiwari, R., Pandey, S., & Pandey, P. (2012). Promising future of probiotics for human health: Current scenario. Chronicles of Young Scientists, 3(1), 17. https://doi.org/10.4103/2229-5186.94308
Toledo, G. S. P. de, Costa, P. T. C., Silva, L. P. da, Pinto, D., Ferreira, P., & Poletto, C. J. (2007). Performance of broilers fed diets added of antibiotic and phytoterapic isolated or associated. Ciência Rural, 37(6), 1760–1764. https://doi.org/10.1590/S0103-84782007000600040
Wang, J., Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., Bai, S., Zeng, Q., Mao, X., Xu, S., Zhang, K., & Li, M. (2021). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024
World Health Organization. 1997. The medical impact of antimicrobial use in food animals. WHO.
Zhang, C., Li, C. X., Shao, Q., Chen, W. B., Ma, L., Xu, W. H., Li, Y. X., Huang, S. C., & Ma, Y. B. (2020). Effects of Glycyrrhiza polysaccharide in diet on growth performance, serum antioxidant capacity, and biochemistry of broilers. Poultry Science, 100(3), 100927. https://doi.org/10.1016/j.psj.2020.12.025
Zhang, S., Zhong, G., Shao, D., Wang, Q., Hu, Y., Wu, T., Ji, C., & Shi, S. (2021). Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poultry Science, 100(3), 100935. https://doi.org/10.1016/j.psj.2020.12.032
Zhao, X., & Kuipers, O. P. (2016). Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics, 17(1), 882. https://doi.org/10.1186/s12864-016-3224-y
Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Dayane Albuquerque da Silva; Carlos Bôa Viagem Rabello; Marcos José Batista dos Santos; Júlio Cézar dos Santos Nascimento; Apolônio Gomes Ribeiro; Gabriel Miranda Macambira; Helia Sharlane de Holanda Oliveira; Ana Carolina Ferreira dos Santos; Letícia Aline Lima da Silva; Maria Aline Alves Mota; Mirelio Ferreira da Silva; Marcos Rafael de Sousa Rodrigues; Jéssica Maria dos Santos Silva
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.