Agentes emulsionantes aplicados a la estabilización de emulsiones o/w con el fin de mejorar el transporte de petróleos pesados a través de las tuberías: Un estudio bibliométrico

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i7.16786

Palabras clave:

Petróleos pesados; Emulsión de petróleo-en-agua; Estabilidad; Transporte por tubería.

Resumen

La creciente demanda de energía asociada a la progresiva disminución de las reservas de petróleo convencional (extraligero, ligero y medio) ha estimulado la exploración de yacimientos de petróleos pesados y extrapesados. Sin embargo, debido a varias características intrínsecas de estos aceites, explorarlos, transportarlos y refinarlos aún son desafíos por superar. Así, el presente trabajo tuvo como objetivo presentar una revisión bibliométrica sobre los principales agentes emulsionantes que se han utilizado en la estabilización de emulsiones de aceite pesado en agua (O/W), con el fin de mejorar el flujo de estos aceites en condiciones superficiales (flujo en tubería). La búsqueda se realizó utilizando las plataformas Science Direct, One Petro y Web of Science, insertando las siguientes palabras clave: Heavy crude oil; Oil-in-water emulsion; Stability; Pipeline transportation. El lapso de tiempo se limitó a 10 años (2011-2020) y, posteriormente, se aplicaron los criterios de inclusión / exclusión, con el fin de afinar la búsqueda. Como resultado, se obtuvo un total de 18 artículos científicos. Entre los países que mostraron mayor interés en el tema, se pueden destacar India, Noruega, México, China, Estados Unidos e Irán. En relación a los emulsionantes más utilizados en la estabilización de emulsiones O/W, tensioactivos y partículas sólidos fueron los más citado. Aunque los tensioactivos no iónicos se han identificado como los más eficientes, aún se necesitan estudios más detallados para comprender lo mecanismo de acción de estos agentes, así como para evaluar la capacidad de estos compuestos para estabilizar emulsiones O/W en condiciones de flujo superficial.

Biografía del autor/a

Jesuina Cássia Santiago de Araújo, Universidade Federal do Espírito Santo

Centro Universitário Norte do Espírito Santo/ Departamento de Engenharias e Tecnologia

Citas

Abdurahman, N., Rosli, Y., Azhari, N., & Hayder, B. (2012). Pipeline transportation of viscous crudes as concentrated oil-in-water emulsions. Journal of Petroleum Science and Engineering, 90–91, 139–144. https://doi.org/10.1016/j.petrol.2012.04.025.

Ahmed, N. S., Nassar, A. M., Zaki, N. N., & Gharieb, H. K. (1999). Formation of fluid heavy oil-in-water emulsions for pipeline transportation. Fuel, 78(5), 593–600. https://doi.org/10.1016/s0016-2361(98)00157-4.

Al-Hashmi, A. R., Al-Wahaibi, T. K., Al-Wahaibi, Y. M., Mjalli, F., & Al-Omairi, R. (2016). Transportation of heavy oils using polymer-stabilized oil-in-water emulsions. Journal of Petroleum Exploration and Production Technology, 7(3), 881–890. https://doi.org/10.1007/s13202-016-0298-7.

Ashrafizadeh, S., Motaee, E., & Hoshyargar, V. (2012). Emulsification of heavy crude oil in water by natural surfactants. Journal of Petroleum Science and Engineering, 86–87, 137–143. https://doi.org/10.1016/j.petrol.2012.03.026.

Azodi, M., & Nazar, A. R. S. (2013). Experimental design approach to investigate the effects of operating factors on the surface tension, viscosity, and stability of heavy crude oil-in-water emulsions. Journal of Dispersion Science and Technology, 34(2), 273–282. https://doi.org/10.1080/01932691.2011.646611.

Baek, K. H., Argüelles-Vivas, F. J., Okuno, R., Sheng, K., Sharma, H., & Weerasooriya, U. P. (2018). Emulsification of Athabasca bitumen by organic alkali: Emulsion phase behavior and viscosity for bitumen/brine/triethylenetetramine. Journal of Petroleum Science and Engineering, 168, 359–369. https://doi.org/10.1016/j.petrol.2018.04.063.

Batıgöç, Ç., Akbaş, H., & Boz, M. (2011). Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point. The Journal of Chemical Thermodynamics. 43(12), 1800-1803. https://doi.org/10.1016/j.jct.2011.06.005.

Cerón-Camacho, R., Martínez-Palou, R., Chávez-Gómez, B., Cuéllar, F., Bernal-Huicochea, C., Clavel, J. D. L. C., & Aburto, J. (2013). Synergistic effect of alkyl-O-glucoside and -cellobioside biosurfactants as effective emulsifiers of crude oil in water. A proposal for the transport of heavy crude oil by pipeline. Fuel, 110, 310–317. https://doi.org/10.1016/j.fuel.2012.11.023.

Ding, B., & Dong, M. (2019). Optimization of plugging high mobility zones in oil sands by injection of oil-in-water emulsion: Experimental and modeling study. Fuel, 257, 116024. https://doi.org/10.1016/j.fuel.2019.116024.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Fonseca, M. B., Lyrio Pereira, M., Justiniano, M. R., & Santana, R. C. (2016). Geração de emulsões de petróleo A/O e O/A sem a adição de surfactante. Latin American Journal of Energy Research, 3(1), 10–16. https://doi.org/10.21712/lajer.2016.v3.n1.p10-16.

Gao, Y., Wu, B., Gao, J., Wang, L., Zhao, W., & Gui, Z. (2013). The formation of waxy crude oil-in-water emulsions for the reduction of pour point and viscosity. Petroleum Science and Technology, 31(23), 2443–2450. https://doi.org/10.1080/10916466.2011.619242.

Gavrielatos, I., Dabirian, R., Mohan, R., & Shoham, O. (2019). Comparison of nanoparticle and surfactant oil/water-emulsion separation kinetics. SPE Journal, 24(05), 2182–2194. https://doi.org/10.2118/190114-pa.

Gerez, J. M., & Pick, A. R. (1996). Heavy oil transportation by pipeline. Volume 2: Design, Construction, and Operation Innovations; Compression and Pump Technology; SCADA, Automation, and Measurement; System Simulation; Geotechnical and Environmental, 2, 699–710. https://doi.org/10.1115/ipc1996-1875.

Ghannam, M. T., Hasan, S. W., Abu-Jdayil, B., & Esmail, N. (2012). Rheological properties of heavy & light crude oil mixtures for improving flowability. Journal of Petroleum Science and Engineering, 81, 122–128.

https://doi.org/10.1016/j.petrol.2011.12.024.

Gudala, M., Naiya, T. K., & Govindarajan, S. K. (2020). Remediation of heavy oil transportation problems via pipelines using biodegradable additives: an experimental and artificial intelligence approach. SPE Journal, 26(02), 1050–1071. https://doi.org/10.2118/203824-pa.

Guo, K., Li, H., & Yu, Z. (2016). In-situ heavy and extra-heavy oil recovery: A review. Fuel, 185, 886–902. https://doi.org/10.1016/j.fuel.2016.08.047.

Hasan, S. W., Ghannam, M. T., & Esmail, N. (2010). Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel, 89(5), 1095–1100. https://doi.org/10.1016/j.fuel.2009.12.021.

Hoshyargar, V., & Ashrafizadeh, S. N. (2013). Optimization of Flow Parameters of Heavy Crude Oil-in-Water Emulsions through Pipelines. Industrial & Engineering Chemistry Research, 52(4), 1600–1611. https://doi.org/10.1021/ie302993m.

IEA- International Energy Agency. (2008). World Energy Outlook 2008 – Analysis - IEA. Disponível em: https://www.iea.org/reports/world-energy-outlook-2008 [Acessado em 9 fevereiro 2021].

Jin, F. Y., Wang, S., Pu, W. F., Yuan, C. D., Wang, L., Li, K. X., & Gong, C. (2016). Emulsified oil foam for improving the flowability of heavy oil in wellbore under high salinity environments. Journal of Industrial and Engineering Chemistry, 39, 153–161. https://doi.org/10.1016/j.jiec.2016.05.018.

Kalra, A., Venkatraman, A., Raney, K. H., & Dindoruk, B. (2012). Prediction and experimental measurements of water-in-oil emulsion viscosities during alkaline/surfactant injections. Oil and Gas Facilities, 1(03), 34–43. https://doi.org/10.2118/143992-pa.

Kralova, I., Sjöblom, J., Øye, G., Simon, S., Grimes, B. A., & Paso, K. (2011). Heavy crude oils/particle stabilized emulsions. Advances in Colloid and Interface Science, 169(2), 106–127. https://doi.org/10.1016/j.cis.2011.09.001.

Kumar, S., & Mahto, V. (2017). Emulsification of Indian heavy crude oil using a novel surfactant for pipeline transportation. Petroleum Science, 14(2), 372–382. https://doi.org/10.1007/s12182-017-0153-6.

Langevin, D., Poteau, S., Hénaut, I., & Argillier, J. F. (2004). Crude oil emulsion properties and their application to heavy oil transportation. Oil & Gas Science and Technology, 59(5), 511–521. https://doi.org/10.2516/ogst:2004036.

Lim, J., Wong, S., Law, M., Samyudia, Y., & Dol, S. (2015). A review on the effects of emulsions on flow behaviours and common factors affecting the stability of emulsions. Journal of Applied Sciences, 15(2), 167–172. https://doi.org/10.3923/jas.2015.167.172.

Liyana, M., Nour, A.H., Rizauddin, D., & Jolius, G. (2014). Stabilization and characterization of heavy crude oilin-water (o/w) emulsions. International Journal of Research in Engineering and Technology, 03, 489-496. https://doi.org/10.15623/IJRET.2014.0302085.

Liyana-Nadirah, M.S., Abdurahman, H. N., & Rizauddin, D. (2014). Rheological study of petroleum fluid and oil-in-water emulsion. International Journal of Engineering Sciences & Research Technology, 3(1), 129-134. http://www.ijesrt.com.

Malkin, A., Zadymova, N., Skvortsova, Z., Traskine, V., & Kulichikhin, V. (2016). Formation of concentrated emulsions in heavy oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 343–349. https://doi.org/10.1016/j.colsurfa.2016.05.094.

Martínez-Palou, R., Reyes, J., Cerón-Camacho, R., Ramírez-de-Santiago, M., Villanueva, D., Vallejo, A. A., & Aburto, J. (2015). Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions—A proposed strategy for transporting extra heavy crude oils. Chemical Engineering and Processing: Process Intensification, 98, 112–122. https://doi.org/10.1016/j.cep.2015.09.014.

Meriem-Benziane, M., Abdul-Wahab, S. A., Benaicha, M., & Belhadri, M. (2012). Investigating the rheological properties of light crude oil and the characteristics of its emulsions in order to improve pipeline flow. Fuel, 95, 97–107. https://doi.org/10.1016/j.fuel.2011.10.007.

Mironova, M. V., & Ilyin, S. O. (2018). Effect of silica and clay minerals on rheology of heavy crude oil emulsions. Fuel, 232, 290–298. https://doi.org/10.1016/j.fuel.2018.05.164.

Meyer, R. F., & Attanasi, E. (2003). Heavy Oil and Natural Bitumen: strategic petroleum resources. Fact Sheet. Published. https://doi.org/10.3133/fs07003.

Nguyen, D., & Balsamo, V. (2013). Emulsification of heavy oil in aqueous solutions of poly(vinyl alcohol): a method for reducing apparent viscosity of production fluids. Energy & Fuels, 27(4), 1736–1747. https://doi.org/10.1021/ef3014986.

Perazzo, A., Preziosi, V., & Guido, S. (2015). Phase inversion emulsification: Current understanding and applications. Advances in Colloid and Interface Science, 222, 581–599. https://doi.org/10.1016/j.cis.2015.01.001.

Omer, A., & Pal, R. (2010). Pipeline flow behavior of water-in-oil emulsions with and without a polymeric additive in the aqueous phase. Chemical Engineering & Technology, 33(6), 983–992. https://doi.org/10.1002/ceat.200900297.

Rodrigues, M. A. F. (2012). Análise de viabilidade de injeção de fluidos alternativos ao vapor em reservatórios de óleo pesado. [Tese de Doutorado, Universidade Federal do Rio Grande do Norte]. https://repositorio.ufrn.br/jspui/handle/123456789/13019.

Sakai, T. (2008). Surfactant-free emulsions. Current Opinion in Colloid & Interface Science, 13(4), 228–235. https://doi.org/10.1016/j.cocis.2007.11.013.

Saniere, A., Hénaut, I., & Argillier, J. F. (2004). Pipeline transportation of heavy oils, a strategic, economic and technological challenge. Oil & Gas Science and Technology, 59(5), 455–466. https://doi.org/10.2516/ogst:2004031.

Santos, R. G., Loh, W., Bannwart, A. C., & Trevisan, O. V. (2014). An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering, 31(3), 571–590. https://doi.org/10.1590/0104-6632.20140313s00001853.

Shah, A., Fishwick, R., Wood, J., Leeke, G., Rigby, S., & Greaves, M. (2010). A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy & Environmental Science, 3(6), 700. https://doi.org/10.1039/b918960b.

Sharma, R., Deka, B., Mandal, A., & Mahto, V. (2018). Study the influence of sodium dodecyl sulfate on emulsification of heavy and waxy crude oils to improve their flow ability in low temperature conditions. Asia-Pacific Journal of Chemical Engineering, 14(1), e2279. https://doi.org/10.1002/apj.2279.

Shmueli, A., Unander, T. E., & Schümann, H. (2018). Oil/water pipe-flow dispersions: from traditional flow loops to real industrial-transport conditions. SPE Production & Operations, 34(01), 260–269. https://doi.org/10.2118/193998-pa.

Sun, N., Jiang, H., Wang, X., & Jin, K. (2017). Research on factors affecting heavy oil-in-water emulsion rheology and pressure drop. Journal of Dispersion Science and Technology, 39(3), 411–422. https://doi.org/10.1080/01932691.2017.1324795.

Sun, N., Jing, J., Jiang, H., An, Y., Wu, C., Zheng, S., & Qi, H. (2016). Effects of surfactants and alkalis on the stability of heavy-oil-in-water emulsions. SPE Journal, 22(01), 120–129. https://doi.org/10.2118/181742-pa.

Strassner, J. (1968). Effect of pH on interfacial films and stability of crude oil-water emulsions. Journal of Petroleum Technology, 20(03), 303–312. https://doi.org/10.2118/1939-pa.

Taylor, S. E. (2011). Thermal destabilisation of bitumen-in-water emulsions – A spinning drop tensiometry study. Fuel, 90(10), 3028–3039. https://doi.org/10.1016/j.fuel.2011.05.028.

Tian, S., Gao, W., Liu, Y., & Kang, W. (2019). Study on the stability of heavy crude oil-in-water emulsions stabilized by two different hydrophobic amphiphilic polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 299–306. https://doi.org/10.1016/j.colsurfa.2019.04.017.

Umar, A. A., Saaid, I. B. M., Sulaimon, A. A., & Pilus, R. B. M. (2018). A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. Journal of Petroleum Science and Engineering, 165, 673–690. https://doi.org/10.1016/j.petrol.2018.03.014.

Xu, P., Wang, Z., Xu, Z., Hao, J., & Sun, D. (2016). Highly effective emulsification/demulsification with a CO2-switchable superamphiphile. Journal of Colloid and Interface Science, 480, 198–204. https://doi.org/10.1016/j.jcis.2016.07.023.

Yaghi, B. M., & Al-Bemani, A. (2002). Heavy crude oil viscosity reduction for pipeline transportation. Energy Sources, 24(2), 93–102. https://doi.org/10.1080/00908310252774417.

Yu, L., Li, S., Stubbs, L. P., & Lau, H. C. (2020). Effects of salinity and ph on the stability of clay-stabilized oil-in-water pickering emulsions. SPE Journal, 1–20. https://doi.org/10.2118/203825-pa.

Zadymova, N. M., Skvortsova, Z. N., Traskine, V. Y., Kulikov-Kostyushko, F. A., Kulichikhin, V. G., & Malkin, A. Y. (2017). Rheological properties of heavy oil emulsions with different morphologies. Journal of Petroleum Science and Engineering, 149, 522–530. https://doi.org/10.1016/j.petrol.2016.10.063.

Zaki, N. N. (1997). Surfactant stabilized crude oil-in-water emulsions for pipeline transportation of viscous crude oils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 125(1), 19–25. https://doi.org/10.1016/s0927-7757(96)03768-5.

Zanotti, M. A. G., & Santos, R. G. (2019). Thixotropic behavior of oil-in-water emulsions stabilized with ethoxylated amines at low shear rates. Chemical Engineering & Technology, 42(2), 432–443. https://doi.org/10.1002/ceat.201800300.

Zolfaghari, R., Fakhru’l-Razi, A., Abdullah, L. C., Elnashaie, S. S., & Pendashteh, A. (2016). Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Separation and Purification Technology, 170, 377–407. https://doi.org/10.1016/j.seppur.2016.06.026.

Publicado

26/06/2021

Cómo citar

SIQUEIRA, F. F. de .; MENEGUELO, A. P.; ARAÚJO, J. C. S. de. Agentes emulsionantes aplicados a la estabilización de emulsiones o/w con el fin de mejorar el transporte de petróleos pesados a través de las tuberías: Un estudio bibliométrico. Research, Society and Development, [S. l.], v. 10, n. 7, p. e39310716785, 2021. DOI: 10.33448/rsd-v10i7.16786. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16786. Acesso em: 17 jul. 2024.

Número

Sección

Revisiones