Agentes emulsificantes aplicados à estabilização de emulsões o/a com intuito de melhorar o transporte de óleos pesados através das tubulações: Um estudo bibliométrico
DOI:
https://doi.org/10.33448/rsd-v10i7.16786Palavras-chave:
Óleo cru pesado; Emulsão óleo-em-água; Estabilidade; Transporte por tubulações.Resumo
A crescente demanda de energia associada ao declínio progressivo das reservas de óleos convencionais (óleo extraleves, leves e médios) têm estimulado a exploração de campos de óleos pesados e extra-pesados. Porém, por conta de diversas características intrínsecas destes óleos, explorá-los, transportá-los e refiná-los ainda são desafios a serem vencidos. Dessa forma, o presente trabalho teve como objetivo apresentar uma revisão bibliométrica sobre os principais agentes emulsificantes que vêm sendo empregados na estabilização de emulsões de óleo pesado em água (O/A), com fins de melhorar o escoamento desses óleos nas condições de superfície (fluxo em tubulações). A busca foi realizada utilizando as plataformas Science Direct, One Petro e Web of Science, inserindo as seguintes palavras-chaves: Heavy crude oil; Oil-in-water emulsion; Stability; Pipeline transportation. A abrangência temporal foi limitada em 10 anos (2011-2020) e, na sequência, os critérios de inclusão/exclusão foram aplicados, de modo a refinar a busca. Como resultado foi obtido um total de 18 artigos científicos. Dentre os países que apresentaram maior interesse no tema, podemos destacar a Índia, a Noruega, o México, a China, os Estados Unidos e o Irã. Em relação aos emulsificantes mais empregados na estabilização de emulsões O/A os surfactantes e as partículas sólidas foram os mais citados. Embora os surfactantes não iônicos tenham sido apontados como os mais eficientes, ainda são necessários estudos mais detalhados para entender o mecanismo de atuação destes agentes, bem como avaliar a capacidade destes compostos de estabilizar emulsões O/A em condições de escoamento em superfície.
Referências
Abdurahman, N., Rosli, Y., Azhari, N., & Hayder, B. (2012). Pipeline transportation of viscous crudes as concentrated oil-in-water emulsions. Journal of Petroleum Science and Engineering, 90–91, 139–144. https://doi.org/10.1016/j.petrol.2012.04.025.
Ahmed, N. S., Nassar, A. M., Zaki, N. N., & Gharieb, H. K. (1999). Formation of fluid heavy oil-in-water emulsions for pipeline transportation. Fuel, 78(5), 593–600. https://doi.org/10.1016/s0016-2361(98)00157-4.
Al-Hashmi, A. R., Al-Wahaibi, T. K., Al-Wahaibi, Y. M., Mjalli, F., & Al-Omairi, R. (2016). Transportation of heavy oils using polymer-stabilized oil-in-water emulsions. Journal of Petroleum Exploration and Production Technology, 7(3), 881–890. https://doi.org/10.1007/s13202-016-0298-7.
Ashrafizadeh, S., Motaee, E., & Hoshyargar, V. (2012). Emulsification of heavy crude oil in water by natural surfactants. Journal of Petroleum Science and Engineering, 86–87, 137–143. https://doi.org/10.1016/j.petrol.2012.03.026.
Azodi, M., & Nazar, A. R. S. (2013). Experimental design approach to investigate the effects of operating factors on the surface tension, viscosity, and stability of heavy crude oil-in-water emulsions. Journal of Dispersion Science and Technology, 34(2), 273–282. https://doi.org/10.1080/01932691.2011.646611.
Baek, K. H., Argüelles-Vivas, F. J., Okuno, R., Sheng, K., Sharma, H., & Weerasooriya, U. P. (2018). Emulsification of Athabasca bitumen by organic alkali: Emulsion phase behavior and viscosity for bitumen/brine/triethylenetetramine. Journal of Petroleum Science and Engineering, 168, 359–369. https://doi.org/10.1016/j.petrol.2018.04.063.
Batıgöç, Ç., Akbaş, H., & Boz, M. (2011). Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point. The Journal of Chemical Thermodynamics. 43(12), 1800-1803. https://doi.org/10.1016/j.jct.2011.06.005.
Cerón-Camacho, R., Martínez-Palou, R., Chávez-Gómez, B., Cuéllar, F., Bernal-Huicochea, C., Clavel, J. D. L. C., & Aburto, J. (2013). Synergistic effect of alkyl-O-glucoside and -cellobioside biosurfactants as effective emulsifiers of crude oil in water. A proposal for the transport of heavy crude oil by pipeline. Fuel, 110, 310–317. https://doi.org/10.1016/j.fuel.2012.11.023.
Ding, B., & Dong, M. (2019). Optimization of plugging high mobility zones in oil sands by injection of oil-in-water emulsion: Experimental and modeling study. Fuel, 257, 116024. https://doi.org/10.1016/j.fuel.2019.116024.
Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.
Fonseca, M. B., Lyrio Pereira, M., Justiniano, M. R., & Santana, R. C. (2016). Geração de emulsões de petróleo A/O e O/A sem a adição de surfactante. Latin American Journal of Energy Research, 3(1), 10–16. https://doi.org/10.21712/lajer.2016.v3.n1.p10-16.
Gao, Y., Wu, B., Gao, J., Wang, L., Zhao, W., & Gui, Z. (2013). The formation of waxy crude oil-in-water emulsions for the reduction of pour point and viscosity. Petroleum Science and Technology, 31(23), 2443–2450. https://doi.org/10.1080/10916466.2011.619242.
Gavrielatos, I., Dabirian, R., Mohan, R., & Shoham, O. (2019). Comparison of nanoparticle and surfactant oil/water-emulsion separation kinetics. SPE Journal, 24(05), 2182–2194. https://doi.org/10.2118/190114-pa.
Gerez, J. M., & Pick, A. R. (1996). Heavy oil transportation by pipeline. Volume 2: Design, Construction, and Operation Innovations; Compression and Pump Technology; SCADA, Automation, and Measurement; System Simulation; Geotechnical and Environmental, 2, 699–710. https://doi.org/10.1115/ipc1996-1875.
Ghannam, M. T., Hasan, S. W., Abu-Jdayil, B., & Esmail, N. (2012). Rheological properties of heavy & light crude oil mixtures for improving flowability. Journal of Petroleum Science and Engineering, 81, 122–128.
https://doi.org/10.1016/j.petrol.2011.12.024.
Gudala, M., Naiya, T. K., & Govindarajan, S. K. (2020). Remediation of heavy oil transportation problems via pipelines using biodegradable additives: an experimental and artificial intelligence approach. SPE Journal, 26(02), 1050–1071. https://doi.org/10.2118/203824-pa.
Guo, K., Li, H., & Yu, Z. (2016). In-situ heavy and extra-heavy oil recovery: A review. Fuel, 185, 886–902. https://doi.org/10.1016/j.fuel.2016.08.047.
Hasan, S. W., Ghannam, M. T., & Esmail, N. (2010). Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel, 89(5), 1095–1100. https://doi.org/10.1016/j.fuel.2009.12.021.
Hoshyargar, V., & Ashrafizadeh, S. N. (2013). Optimization of Flow Parameters of Heavy Crude Oil-in-Water Emulsions through Pipelines. Industrial & Engineering Chemistry Research, 52(4), 1600–1611. https://doi.org/10.1021/ie302993m.
IEA- International Energy Agency. (2008). World Energy Outlook 2008 – Analysis - IEA. Disponível em: https://www.iea.org/reports/world-energy-outlook-2008 [Acessado em 9 fevereiro 2021].
Jin, F. Y., Wang, S., Pu, W. F., Yuan, C. D., Wang, L., Li, K. X., & Gong, C. (2016). Emulsified oil foam for improving the flowability of heavy oil in wellbore under high salinity environments. Journal of Industrial and Engineering Chemistry, 39, 153–161. https://doi.org/10.1016/j.jiec.2016.05.018.
Kalra, A., Venkatraman, A., Raney, K. H., & Dindoruk, B. (2012). Prediction and experimental measurements of water-in-oil emulsion viscosities during alkaline/surfactant injections. Oil and Gas Facilities, 1(03), 34–43. https://doi.org/10.2118/143992-pa.
Kralova, I., Sjöblom, J., Øye, G., Simon, S., Grimes, B. A., & Paso, K. (2011). Heavy crude oils/particle stabilized emulsions. Advances in Colloid and Interface Science, 169(2), 106–127. https://doi.org/10.1016/j.cis.2011.09.001.
Kumar, S., & Mahto, V. (2017). Emulsification of Indian heavy crude oil using a novel surfactant for pipeline transportation. Petroleum Science, 14(2), 372–382. https://doi.org/10.1007/s12182-017-0153-6.
Langevin, D., Poteau, S., Hénaut, I., & Argillier, J. F. (2004). Crude oil emulsion properties and their application to heavy oil transportation. Oil & Gas Science and Technology, 59(5), 511–521. https://doi.org/10.2516/ogst:2004036.
Lim, J., Wong, S., Law, M., Samyudia, Y., & Dol, S. (2015). A review on the effects of emulsions on flow behaviours and common factors affecting the stability of emulsions. Journal of Applied Sciences, 15(2), 167–172. https://doi.org/10.3923/jas.2015.167.172.
Liyana, M., Nour, A.H., Rizauddin, D., & Jolius, G. (2014). Stabilization and characterization of heavy crude oilin-water (o/w) emulsions. International Journal of Research in Engineering and Technology, 03, 489-496. https://doi.org/10.15623/IJRET.2014.0302085.
Liyana-Nadirah, M.S., Abdurahman, H. N., & Rizauddin, D. (2014). Rheological study of petroleum fluid and oil-in-water emulsion. International Journal of Engineering Sciences & Research Technology, 3(1), 129-134. http://www.ijesrt.com.
Malkin, A., Zadymova, N., Skvortsova, Z., Traskine, V., & Kulichikhin, V. (2016). Formation of concentrated emulsions in heavy oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 343–349. https://doi.org/10.1016/j.colsurfa.2016.05.094.
Martínez-Palou, R., Reyes, J., Cerón-Camacho, R., Ramírez-de-Santiago, M., Villanueva, D., Vallejo, A. A., & Aburto, J. (2015). Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions—A proposed strategy for transporting extra heavy crude oils. Chemical Engineering and Processing: Process Intensification, 98, 112–122. https://doi.org/10.1016/j.cep.2015.09.014.
Meriem-Benziane, M., Abdul-Wahab, S. A., Benaicha, M., & Belhadri, M. (2012). Investigating the rheological properties of light crude oil and the characteristics of its emulsions in order to improve pipeline flow. Fuel, 95, 97–107. https://doi.org/10.1016/j.fuel.2011.10.007.
Mironova, M. V., & Ilyin, S. O. (2018). Effect of silica and clay minerals on rheology of heavy crude oil emulsions. Fuel, 232, 290–298. https://doi.org/10.1016/j.fuel.2018.05.164.
Meyer, R. F., & Attanasi, E. (2003). Heavy Oil and Natural Bitumen: strategic petroleum resources. Fact Sheet. Published. https://doi.org/10.3133/fs07003.
Nguyen, D., & Balsamo, V. (2013). Emulsification of heavy oil in aqueous solutions of poly(vinyl alcohol): a method for reducing apparent viscosity of production fluids. Energy & Fuels, 27(4), 1736–1747. https://doi.org/10.1021/ef3014986.
Perazzo, A., Preziosi, V., & Guido, S. (2015). Phase inversion emulsification: Current understanding and applications. Advances in Colloid and Interface Science, 222, 581–599. https://doi.org/10.1016/j.cis.2015.01.001.
Omer, A., & Pal, R. (2010). Pipeline flow behavior of water-in-oil emulsions with and without a polymeric additive in the aqueous phase. Chemical Engineering & Technology, 33(6), 983–992. https://doi.org/10.1002/ceat.200900297.
Rodrigues, M. A. F. (2012). Análise de viabilidade de injeção de fluidos alternativos ao vapor em reservatórios de óleo pesado. [Tese de Doutorado, Universidade Federal do Rio Grande do Norte]. https://repositorio.ufrn.br/jspui/handle/123456789/13019.
Sakai, T. (2008). Surfactant-free emulsions. Current Opinion in Colloid & Interface Science, 13(4), 228–235. https://doi.org/10.1016/j.cocis.2007.11.013.
Saniere, A., Hénaut, I., & Argillier, J. F. (2004). Pipeline transportation of heavy oils, a strategic, economic and technological challenge. Oil & Gas Science and Technology, 59(5), 455–466. https://doi.org/10.2516/ogst:2004031.
Santos, R. G., Loh, W., Bannwart, A. C., & Trevisan, O. V. (2014). An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering, 31(3), 571–590. https://doi.org/10.1590/0104-6632.20140313s00001853.
Shah, A., Fishwick, R., Wood, J., Leeke, G., Rigby, S., & Greaves, M. (2010). A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy & Environmental Science, 3(6), 700. https://doi.org/10.1039/b918960b.
Sharma, R., Deka, B., Mandal, A., & Mahto, V. (2018). Study the influence of sodium dodecyl sulfate on emulsification of heavy and waxy crude oils to improve their flow ability in low temperature conditions. Asia-Pacific Journal of Chemical Engineering, 14(1), e2279. https://doi.org/10.1002/apj.2279.
Shmueli, A., Unander, T. E., & Schümann, H. (2018). Oil/water pipe-flow dispersions: from traditional flow loops to real industrial-transport conditions. SPE Production & Operations, 34(01), 260–269. https://doi.org/10.2118/193998-pa.
Sun, N., Jiang, H., Wang, X., & Jin, K. (2017). Research on factors affecting heavy oil-in-water emulsion rheology and pressure drop. Journal of Dispersion Science and Technology, 39(3), 411–422. https://doi.org/10.1080/01932691.2017.1324795.
Sun, N., Jing, J., Jiang, H., An, Y., Wu, C., Zheng, S., & Qi, H. (2016). Effects of surfactants and alkalis on the stability of heavy-oil-in-water emulsions. SPE Journal, 22(01), 120–129. https://doi.org/10.2118/181742-pa.
Strassner, J. (1968). Effect of pH on interfacial films and stability of crude oil-water emulsions. Journal of Petroleum Technology, 20(03), 303–312. https://doi.org/10.2118/1939-pa.
Taylor, S. E. (2011). Thermal destabilisation of bitumen-in-water emulsions – A spinning drop tensiometry study. Fuel, 90(10), 3028–3039. https://doi.org/10.1016/j.fuel.2011.05.028.
Tian, S., Gao, W., Liu, Y., & Kang, W. (2019). Study on the stability of heavy crude oil-in-water emulsions stabilized by two different hydrophobic amphiphilic polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 299–306. https://doi.org/10.1016/j.colsurfa.2019.04.017.
Umar, A. A., Saaid, I. B. M., Sulaimon, A. A., & Pilus, R. B. M. (2018). A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. Journal of Petroleum Science and Engineering, 165, 673–690. https://doi.org/10.1016/j.petrol.2018.03.014.
Xu, P., Wang, Z., Xu, Z., Hao, J., & Sun, D. (2016). Highly effective emulsification/demulsification with a CO2-switchable superamphiphile. Journal of Colloid and Interface Science, 480, 198–204. https://doi.org/10.1016/j.jcis.2016.07.023.
Yaghi, B. M., & Al-Bemani, A. (2002). Heavy crude oil viscosity reduction for pipeline transportation. Energy Sources, 24(2), 93–102. https://doi.org/10.1080/00908310252774417.
Yu, L., Li, S., Stubbs, L. P., & Lau, H. C. (2020). Effects of salinity and ph on the stability of clay-stabilized oil-in-water pickering emulsions. SPE Journal, 1–20. https://doi.org/10.2118/203825-pa.
Zadymova, N. M., Skvortsova, Z. N., Traskine, V. Y., Kulikov-Kostyushko, F. A., Kulichikhin, V. G., & Malkin, A. Y. (2017). Rheological properties of heavy oil emulsions with different morphologies. Journal of Petroleum Science and Engineering, 149, 522–530. https://doi.org/10.1016/j.petrol.2016.10.063.
Zaki, N. N. (1997). Surfactant stabilized crude oil-in-water emulsions for pipeline transportation of viscous crude oils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 125(1), 19–25. https://doi.org/10.1016/s0927-7757(96)03768-5.
Zanotti, M. A. G., & Santos, R. G. (2019). Thixotropic behavior of oil-in-water emulsions stabilized with ethoxylated amines at low shear rates. Chemical Engineering & Technology, 42(2), 432–443. https://doi.org/10.1002/ceat.201800300.
Zolfaghari, R., Fakhru’l-Razi, A., Abdullah, L. C., Elnashaie, S. S., & Pendashteh, A. (2016). Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Separation and Purification Technology, 170, 377–407. https://doi.org/10.1016/j.seppur.2016.06.026.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Fabiana Fassina de Siqueira; Ana Paula Meneguelo; Jesuina Cássia Santiago de Araújo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.