Actividad antimicrobiana in vitro de una mezcla de aceites vegetales de anacardo y ricino y aceites esenciales de clavo, eugenol, timol y vainillina contra bacterias ruminales Gram negativas y Gram positivas
DOI:
https://doi.org/10.33448/rsd-v10i8.16900Palabras clave:
Encapsular compuestos; Inhibición del crecimiento; Aditivos naturales; Ambiente ruminal; Modulación ruminal.Resumen
La preocupación pública por el uso rutinario de antibióticos e ionóforos en las dietas de rumiantes ha aumentado debido a la aparición de bacterias resistentes a los antibióticos que pueden representar riesgos para la salud humana. Por lo tanto, se han realizado esfuerzos para el desarrollo de compuestos alternativos para reemplazar los antibióticos y los ionóforos en la dieta de los rumiantes. Este estudio se llevó a cabo para investigar los efectos in vitro de una mezcla que contiene aceites vegetales de anacardo y ricino y aceites esenciales de clavo, eugenol, timol y vainillina sobre la actividad de bacterias ruminales Gram negativas y Gram positivas. Los experimentos se diseñaron para que cada bacteria fuera expuesta a dosis de 1.5, 3.0, 4.5 y 6.0 mg/mL de la mezcla, con seis repeticiones. Las bacterias se cultivaron en el medio M2 de Hobson en tubos Hungate. La actividad antimicrobiana se evaluó usando un espectrofotómetro a 600 nm. Las lecturas se realizaron 0, 8, 12 y 24 horas después de la inoculación a 39º C. Las cuatro concentraciones (1,5, 3,0, 4,5 y 6,0 mg/mL) de la mezcla de aceites vegetales y esenciales inhibieron el crecimiento de Prevotella albensis, Prevotella bryantii, Prevotella ruminicola y Anaerovibrio lipolyticus a las 8 y 12 horas después de la incubación. Para Ruminococcus albus y Ruminococcus flavefaciens la adición de la mezcla de EO de concentraciones de 3.0 y 4.5 mg/mL resultó en un mayor impacto en la dinámica de crecimiento, con una reducción de la densidad óptica luego de 12 h de incubación. Los hallazgos de esta investigación establecen que la acción combinada de los aceites vegetales y esenciales influye en el crecimiento de bacterias gramnegativas y grampositivas y puede utilizarse como modulador del rumen. El estudio aporta nueva información sobre la acción combinada de los aceites vegetales y esenciales como agentes antimicrobianos en la producción de rumiantes.
Citas
Akhtar, N., Ihsan, U. H., & Mirza, B. (2018). Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arabian Journal of Chemistry, 11(8), 1223–1235. https://doi.org/10.1016/j.arabjc.2015.01.013.
Babaoglu, H. C., Bayrak, A., Ozdemir, N., & Ozgun, N. (2017). Encapsulation of clove essential oil in hydroxypropyl beta‐cyclodextrin for characterization, controlled release, and antioxidant activity. Journal of Food Processing and Preservation, 41(5), e13202. https://doi.org/10.1111/jfpp.13202.
Benchaar, C., Calsamiglia, S., Chaves, A. V, Fraser, G. R., Colombatto, D., McAllister, T. A., & Beauchemin, K. A. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145(1–4), 209–228. https://doi.org/10.1016/j.anifeedsci.2007.04.014.
Biondo, P. B. F., Carbonera, F., Zawadzki, F., Chiavelli, L. U. R., Pilau, E. J., Prado, I. N., & Visentainer, .V. (2017). Antioxidant capacity and identification of bioactive compounds by GC-MS of essential oils from spices, herbs and citrus. Current Bioactive Compounds, 13(2), 137–143. https://doi.org/10.2174/1573407212666160614080846.
Burt, S. A. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.
Cruz, O. T. B., Valero, M. V., Zawadzki, F., Rivaroli, D. C., Prado, R. M., Lima, B. S., & Prado, I. N. (2014). Effect of glycerine and essential oils (anacardium occidentale and ricinus communis) on animal performance, feed efficiency and carcass characteristics of crossbred bulls finished in a feedlot system. Italian Journal of Animal Science, 13(4). https://doi.org/10.4081/ijas.2014.3492.
Davidson, P. M. (1997). Chemical preservatives and natural antimicrobial compounds. In M. P. Doyle, L. R. Beuchat, & T. J. Montville (Eds.), Food microbiology: fundamentals and frontiers (pp. 520–556). American Society for Microbiology.
Davidson, P. M., & Naidu, A. S. (2000). Phyto-phenols. In A. S. Naidu (Ed.), Natural Food Antimicrobial Systems (pp. 265–294). CRC - Press. https://doi.org/http://dx.doi.org/10.3168/jds.2007-0347
Deans, S. G., & Ritchie, G. (1987). Antibacterial properties of plant essential oils. International Journal of Food Microbiology, 5(2), 165–180. https://doi.org/10.1016/0168-1605(87)90034-1
Diggle, P., Diggle, P. J., Heagerty, P., Liang, K.-Y., Heagerty, P. J., & Zeger, S. (2002). Analysis of longitudinal data. Oxford University Press. https://doi.org/10.2307/2291352.
Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308–316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
Dušková, D., & Marounek, M. (2001). Fermentation of pectin and glucose, and activity of pectin‐degrading enzymes in the rumen bacterium Lachnospira multiparus. Letters in Applied Microbiology, 33(2), 159–163. https://doi.org/10.1111/j.1472-765X.2004.01492.x.
Enemark, J. M. D. (2008). The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. The Veterinary Journal, 176(1), 32–43. https://doi.org/10.1016/j.tvjl.2007.12.021.
Fugita, C. A., Prado, R. M., Valero, M. V., Bonafé, E. G., Carvalho, C. B., Guerrero, A., Sañundo, C., & Prado, I. N. (2018). Effect of the inclusion of natural additives on animal performance and meat quality of crossbred bulls (Angus vs. Nellore) finished in feedlot. Animal Production Science, 58(11), 2076–2083. https://doi.org/10.1071/AN16242.
Gedam, P. H., & Sampathkumaran, P. S. (1986). Cashew nut shell liquid: Extraction, chemistry and applications. Progress in Organic Coatings, 14(2), 115–157. https://doi.org/10.1016/0033-0655(86)80009-7
Goñi, P., López, P., Sánchez, C., Gómez-Lus, R., Becerril, R., & Nerín, C. (2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116(4), 982–989. https://doi.org/http://dx.doi.org/10.1016/j.foodchem.2009.03.058.
Guerrero, A., Rivaroli, D. C., Sañudo, C., Campo, M. M., Valero, M. V, Jorge, A. M., & Prado, I. N. (2018). Consumer acceptability of beef from two sexes supplemented with essential oil mix. Animal Production Science, 58(9), 1700–1707. https://doi.org/10.1071/AN15306.
Guil-Guerrero, J. L., Ramos, L., Moreno, C., Zúñiga-Paredes, J. C., Carlosama-Yepez, M., & Ruales, P. (2016). Antimicrobial activity of plant-food by-products: A review focusing on the tropics. Livestock Science, 189, 32–49. https://doi.org/http://dx.doi.org/10.1016/j.livsci.2016.04.021.
Gyawali, R., Hayek, S. A., & Ibrahim, S. A. (2015). Plant extracts as antimicrobials in food products: Mechanisms of action, extraction methods, and applications. Handbook of Natural Antimicrobials for Food Safety and Quality, 1, 49–68. https://doi.org/http://dx.doi.org/10.1016/B978-1-78242-034-7.00003-7.
Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985–990.
Helander, I. M., Alakomi, H.-L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M., & von Wright, A. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46(9), 3590–3595.
Hobson, P. N. (1969). Rumen bacteria. Methods in Microbiology, 3B, 133–149. https://doi.org/10.1016/S0580-9517(08)70504-X.
Hosein, A. M., Breidt, F., & Smith, C. E. (2011). Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157: H7. Applied and Environmental Microbiology, 77(3), 889–895. https://doi.org/10.1128/AEM.02136-10.
Hungate, R. E. (1966). The Rumen and its microbes. In The rumen and its microbes (Academic P). https://doi.org/10.1016/B978-1-4832-3308-6.50005-X
Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3(12), 1–24. https://doi.org/10.3389/fmicb.2012.00012.
Jayasena, D. D., & Jo, C. (2013). Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends in Food Science & Technology, 34(2), 96–108. https://doi.org/10.1016/j.tifs.2013.09.002.
Kempinski, E. M. B. C., Vital, A. C. P., Monteschio, J. O., Alexandre, S., Nascimento, K. F., Madrona, G. S., Mikcha, J. M. G., & Prado, I. N. (2017). Development and quality evaluation of infant food with oregano essential oil for children diagnosed with cerebral palsy. LWT - Food Science and Technology, 84, 579–585. https://doi.org/10.1016/j.lwt.2017.06.016.
Latham, M. J., & Wolin, M. J. (1977). Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Applied and Environmental Microbiology, 34(3), 297–301. https://doi.org/10.1128/aem.34.3.297-301.1977.
Li, X. M., Tian, S. L., Pang, Z. C., Shi, J. Y., Feng, Z. S., & Zhang, Y. M. (2009). Extraction of Cuminum cyminum essential oil by combination technology of organic solvent with low boiling point and steam distillation. Food Chemistry, 115(3), 1114–1119. https://doi.org/10.1016/j.foodchem.2008.12.091.
Monteschio, J. O., Souza, K. A., Vital, A. A. C. P., Guerrero, A., Valero, M. V, Kempinski, E. M. B. C., Barcelos, V. C., Nascimento, K. F., & Prado, I. N. (2017). Clove and rosemary essential oils and encapsuled active principles (eugenol, thymol and vanillin blend) on meat quality of feedlot-finished heifers. Meat Science, 130, 50–57. https://doi.org/10.1016/j.meatsci.2017.04.002.
Monteschio, J. O., Vargas Junior, F. M., Almeida, F. L. A., Pinto, L., Kaneko, I. N., Almeida, A. A., Freitas, L. W., Alves, S. P., Bessa, R. J. B., & Prado, I. N. (2019). The effect of encapsulated active principles (eugenol, thymol and vanillin) and clove and rosemary essential oils on the structure, collagen content, chemical composition and fatty acid profile of Nellore heifers muscle. Meat Science, 155, 27–35. https://doi.org/10.1016/j.meatsci.2019.04.019.
Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67(4), 593–656. https://doi.org/http://dx.doi.org/10.1128/MMBR.67.4.593–656.2003.
Nikmaram, N., Budaraju, S., Barba, F. J., Lorenzo, J. M., Cox, R. B., Mallikarjunan, K., & Roohinejad, S. (2018). Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Science, 145, 245–255. https://doi.org/10.1016/j.meatsci.2018.06.031.
O’Herrin, S. M., & Kenealy, W. R. (1993). Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Applied and Environmental Microbiology, 59(3), 748–755. https://doi.org/10.1128/aem.59.3.748-755.1993.
Olagaray, K. E., & Bradford, B. J. (2019). Plant flavonoids to improve productivity of ruminants–A review. Animal Feed Science and Technology, 251, 21–36. https://doi.org/10.1016/j.anifeedsci.2019.02.004.
Ornaghi, M. G., Guerrero, A., Vital, A. C. P., Souza, K. A., Passetti, R. A. C., Mottin, C., Castilho, R. C., Sañudo, C., & Prado, I. N. (2020). Improvements in the quality of meat from beef cattle fed natural additives. Meat Science, 163, 1–9. https://doi.org/10.1016/j.meatsci.2020.108059.
Ornaghi, M. G., Passetti, R. A. C., Torrecilhas, J. A., Mottin, C., Vital, A. C. P., Guerrero, A., Sañudo, C., Campo, M. M., & Prado, I. N. (2017). Essential oils in the diet of young bulls: Effect on animal performance, digestibility, temperament, feeding behaviour and carcass characteristics. Animal Feed Science and Technology, 234, 274–283. https://doi.org/10.1016/j.anifeedsci.2017.10.008.
Paster, B. J., & Canale-Parola, E. (1985). Treponema saccharophilum sp. nov., a large pectinolytic spirochete from the bovine rumen. Applied and Environmental Microbiology, 50(2), 212–219. https://doi.org/10.1128/aem.50.2.212-219.1985.
Patra, A. K., & Saxena, J. (2009). Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek, 96(4), 363–375.
Patra, A. K., & Saxena, J. (2010). A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71(11–12), 1198–1222. https://doi.org/10.1016/j.phytochem.2010.05.010.
Pereira A.S. et al. (2018). Metodologia da pesquisa científica. [eBook]. Santa Maria. Ed. UAB/NTE/UFSM. Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Radünz, M., Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276, 180–186. https://doi.org/10.1016/j.foodchem.2018.09.173.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237.
Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82(4), 632–639. https://doi.org/10.1093/ps/82.4.632.
Rivaroli, D. C., Guerrero, A., Valero, M. V., Zawadzki, F., Eiras, C. E., Campo, M. D. M., Sañudo, C., Jorge, A. M., & Prado, I. N. (2016). Effect of essential oils on meat and fat qualities of crossbred young bulls finished in feedlots. Meat Science, 121, 278–284. https://doi.org/10.1016/j.meatsci.2016.06.017.
Russell, J B, & Hino, T. (1985). Regulation of lactate production in Streptococcus bovis: a spiraling effect that contributes to rumen acidosis. Journal of Dairy Science, 68(7), 1712–1721. https://doi.org/10.3168/jds.S0022-0302(85)81017-1.
Russell, J B, & Strobel, H. J. (1989). Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology, 55(1), 1–6. https://doi.org/10.1128/aem.55.1.1-6.1989.
Russell, James B, & Rychlik, J. L. (2001). Factors that alter rumen microbial ecology. Science, 292(5519), 1119–1122. https://doi.org/http://doi.org/10.1126/science.1058830.
Saavedra, M. J., Borges, A., Dias, C., Aires, A., Bennett, R. N., Rosa, E. S., & Simões, M. (2010). Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Medicinal Chemistry, 6(3), 174–183. https://doi.org/10.2174/1573406411006030174.
Sánchez, E., García, S., & Heredia, N. (2010). Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Applied and Environmental Microbiology, 76(20), 6888–6894. https://doi.org/10.1128/AEM.03052-09.
Sary, C., Carbonera, F., Silva, M. C. D., Oliveira, M., Lewandowski, V., Todesco, H., Visentainer, J. V., Prado, I. N., & Ribeiro, R. P. (2019). Effect of clove (Eugenia caryophyllus) and cinnamon (Cinnamomum zeylanicum) essential oils in Nile tilapia diets on performance, antioxidant power and lipid oxidation in fillets. Aquaculture Research, 50(2). https://doi.org/10.1111/are.13944.
Schäberle, T. F., & Hack, I. M. (2014). Overcoming the current deadlock in antibiotic research. Trends in Microbiology, 22(4), 165–167. https://doi.org/10.1016/j.tim.2013.12.007.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.
Souza, K. A., Monteschio, J. O., Mottin, C., Ramos, T. R., Pinto, L. A. M., Eiras, C. E., Guerrero, A., & Prado, I. N. (2019). Effects of diet supplementation with clove and rosemary essential oils and protected oils (eugenol, thymol and vanillin) on animal performance, carcass characteristics, digestibility, and ingestive behavior activities for Nellore heifers finished in feedl. Livestock Science, 220, 190–195. https://doi.org/10.1016/j.livsci.2018.12.026.
Stewart, C. S., Flint, H. J., & Bryant, M. P. (2012). The rumen bacteria. In P. N. Hobson & C. S. Stewart (Eds.), Rumen microbial ecosystem (2nd ed., Vol. 1, pp. 10–72). Blackie Academic & Professional.
Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43, 587–595. https://doi.org/10.1016/j.indcrop.2012.07.069.
Valero, M. V, Farias, M. S., Zawadzki, F., Prado, R. M., Fugita, C. A., Rivaroli, D. C., Ornaghi, M. G., & Prado, I. N. (2016). Feeding propolis or essential oils (cashew and castor) to bulls: performance, digestibility, and blood cell counts. Revista Colombiana de Ciencias Pecuarias, 29(1), 33–42.
Vignolo, R., & Naughton, F. (1991). Castor: a new sense of direction. Inform, 2(8), 692–699.
Vital, A. C. P., Guerrero, A., Kempinski, E. M. B. C., Monteschio, J. O., Sary, C., Ramos, T. R. R., Campo, M. ., & Prado, I. N. (2018). Consumer profile and acceptability of cooked beef steks with edible and active coating containing oregano and rosemary essential oils. Meat Science, 143, 153–158. https://doi.org/10.1016/j.meatsci.2018.04.035.
Vital, A. C. P., Guerrero, A., Monteschio, J. D. O., Valero, M. V., Carvalho, C. B., Abreu Filho, B. A., Madrona, G. S., & Prado, I. N. (2016). Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLoS ONE, 11(8). https://doi.org/10.1371/journal.pone.0160535.
Wallace, R. J., Onoder, R., & Cotta, M. A. (2012). Metabolism of nitrogen-containing compounds. In P. N. Hobson & C. S. Stewart (Eds.), Rumen microbial ecosystem (2nd ed., Vol. 1, pp. 283–328). Blackie Academic & Professional.
Zhu, Q. Y., Hackman, R. M., Ensunsa, J. L., Holt, R. R., & Keen, C. L. (2002). Antioxidative activities of oolong tea. Journal of Agricultural and Food Chemistry, 50(23), 6929–6934. https://doi.org/10.1021/jf0206163.
Zotti, C. A., Silva, A. P., Carvalho, R., Marino, C. T., Rodrigues, P. H. M., Silva, L. F. P., McAllister, T. A., & Leme, P. R. (2017). Monensin and a blend of castor oil and cashew nut shell liquid used in a high-concentrate diet abruptly fed to Nellore cattle. Journal of Animal Science, 95(9), 4124–4138. https://doi.org/10.2527/jas2017.1580.
Zuzarte, M., Gonçalves, M. J., Cavaleiro, C., Cruz, M. T., Benzarti, A., Marongiu, B., Maxia, A., Piras, A., & Salgueiro, L. (2013). Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Industrial Crops and Products, 44(0), 97–103. https://doi.org/10.1016/j.indcrop.2012.11.002.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Aylle Medeiros Matos; Mariana Garcia Ornaghi; Venício Macêdo Carvalho; Vicente Alfonso Diaz Avila; Edinéia Bonin; Ricardo de Araújo Castilho; Anderson Valdiney Gomes Ramos; Debora Cristina Baldoqui; Rodolpho Martin do Prado; Ivanor Nunes do Prado
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.