Compuestos bioactivos derivados de matrices de alimentos con potencial terapéutico para la infección por Sars-Cov-2: Una revisión de estudios in silico
DOI:
https://doi.org/10.33448/rsd-v10i8.17178Palabras clave:
Compuestos bioactivos derivados de alimentos; Replicación; SARS-CoV-2; In silico.Resumen
El estudio tuvo como objetivo revisar la literatura sobre evidencia científica disponible sobre el potencial terapéutico que pueden ejercer algunos compuestos bioactivos sobre la infección por Sars-Cov-2, basándose en pruebas realizadas con técnicas de acoplamiento molecular. La revisión integradora se realizó a partir de búsquedas en bases de datos electrónicas sobre publicaciones de artículos originales escritos en inglés y portugués, entre los años 2019 a 2021. Las búsquedas se realizaron en las siguientes bases de datos: Science Direct (Biblioteca Virtual Elsevier), Scielo ( Scientific Electronic Library Online), Pubmed / Medline (Medical Literature Analysis and Retrievel System Online) y VHL (Virtual Health Library), utilizando como descriptores en salud según la plataforma DeCS / MeSH las palabras: Compuestos bioactivos derivados de alimentos, replicación, SARS -CoV-2, in silico, en inglés y portugués, utilizando el término '' y '' como operador booleano. Tras el proceso de búsqueda y selección utilizando los criterios mencionados en la metodología, se seleccionaron 6 artículos. Los productos naturales derivados de las matrices alimentarias podrían ser una fuente valiosa de nuevos compuestos bioactivos para combatir la pandemia de COVID-19. Según los resultados reportados en esta revisión, varios compuestos naturales, entre ellos polifenoles y flavonoides, han demostrado la capacidad de prevenir la replicación del SARS-CoV-2 al inhibir las principales proteasas del virus, mitigando así las consecuencias clínicas de la infección, de acuerdo con el técnica in silico utilizada.
Citas
Ahn, K. S., Sethi, G., Jain, A. K., Jaiswal, A. K., & Aggarwal, B. B. (2006). Genetic deletion of NAD (P) H: quinone oxidoreductase 1 abrogates activation of nuclear factor-κB, IκBα kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis. Journal of Biological Chemistry, 281(29), 19798-19808.
Al-Zamely, H. A., & Al-Tamemi, Z. S. M. (2018). Role of hydroxytyrosol in ameliorating effects of high fat diet on male rats CNS. Journal of Pharmaceutical Sciences and Research, 10(10), 2448-2453.
Arora, S., Lohiya, G., Moharir, K., Shah, S., & Yende, S. (2020). Identification of Potential Flavonoid Inhibitors of the SARS-CoV-2 Main Protease 6YNQ: A Molecular Docking Study. Digital Chinese Medicine, 3(4), 239-248.
Avasarala, S., Zhang, F., Liu, G., Wang, R., London, S. D., & London, L. (2013). Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PloS one, 8(2), e57285.
Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in bioinformatics. 2(1), 23-28.
But, P. P. H., Ooi, V. E. C., He, Y. H., Lee, S. H. S., Lee, S. F., & Lin, R. C. (2001). Antiviral amentoflavone from Selaginella sinensis. Biological and Pharmaceutical Bulletin, 24(3), 311-312.
Chen, T. Y., Chen, D. Y., Wen, H. W., Ou, J. L., Chiou, S. S., Chen, J. M., ... & Hsu, W. L. (2013). Inhibition of enveloped viruses infectivity by curcumin. PloS one, 8(5), e62482.
Christy, M. P., Uekusa, Y., Gerwick, L., & Gerwick, W. H. (2020). Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. Journal of natural products. 10(39), 239-241.
Costa, J. A da., Lima, D. de O.., Moreira, IPM., Santos, BS., Barros, FR., Silva, TR., Barros, GM de., Gomes, ELV da S.., Sousa, ARS., Fontinele, RRC., Veloso, FK de S.., Cruz, R. de CM da., Sousa, A. de OL., Costa, DD de M.., Macedo, MI de., Rocha, L. de B.., Ramos, E. de C.., Silva, CM da., Taveira, LC., & Anjos, NVB dos. (2021). Terapia nutricional para pacientes com Covid-19 em terapia intensiva: uma abordagem para estudos retrospectivos. Research, Society and Development, 10 (5), e24810514861.
Dong, C., Ni, L., Ye, F., Chen, M. L., Feng, Y., Deng, Y. Q., ... & Chen, F. (2020). Characterization of anti-viral immunity in recovered individuals infected by SARS-CoV-2. MedRxiv. 8(39), 187-232.
Gates, B. (2020). Responding to Covid-19—a once-in-a-century pandemic?. New England Journal of Medicine, 382(18), 1677-1679.
Gibbs, J. W. (1873). A method of geometrical representation of the thermodynamic properties by means of surfaces. Transactions of Connecticut Academy of Arts and Sciences, 10(5), 382-404.
Gill, H., & Walker, G. (2008). Selenium, immune function and resistance to viral infections. Nutrition & dietetics, 65(12), S41-S47.
Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1-10.
Huang, J., Tao, G., Liu, J., Cai, J., Huang, Z., & Chen, J. X. (2020). Current prevention of COVID-19: Natural products and herbal medicine. Frontiers in Pharmacology, 11(7) 342-356.
Kalligeros, M., Shehadeh, F., Mylona, E. K., Benitez, G., Beckwith, C. G., Chan, P. A., & Mylonakis, E. (2020). Association of obesity with disease severity among patients with coronavirus disease 2019. Obesity, 28(7), 1200-1204.
Khalifa, I., Nawaz, A., Sobhy, R., Althwab, S. A., & Barakat, H. (2020). Polyacylated anthocyanins constructively network with catalytic dyad residues of 3CLpro of 2019-nCoV than monomeric anthocyanins: A structural-relationship activity study with 10 anthocyanins using in-silico approaches. Journal of Molecular Graphics and Modelling, 100, 107690.
Kozak, J. J., Gray, H. B., & Garza-López, R. A. (2020). Structural stability of the SARS-CoV-2 main protease: Can metal ions affect function?. Journal of Inorganic Biochemistry, 211(54), 111179.
Kumar, V., Dhanjal, J. K., Kaul, S. C., Wadhwa, R., & Sundar, D. (2020). Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure and Dynamics, 2(3), 1-13.
Lakshmi, B., Viswanath, B., & Sai Gopal, D. V. R. (2013). Probiotics as antiviral agents in shrimp aquaculture. Journal of pathogens, 13(3), 45-54.
Lorenzo, V. P. (2016). Estudos in silico com alcaloides oriundos de produtos naturais. Repositório Institucional da UFPB, 1 (1), 39-41.
Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends, 14(1), 69-71.
Mathew, D., & Hsu, W. L. (2018). Antiviral potential of curcumin. Journal of functional foods, 40(4), 692-699.
McMichael, T. M., Currie, D. W., Clark, S., Pogosjans, S., Kay, M., Schwartz, N. G., ... & Duchin, J. S. (2020). Epidemiology of Covid-19 in a long-term care facility in King County, Washington. New England Journal of Medicine, 382(21), 2005-2011.
Messaoudi, O., Gouzi, H., El-Hoshoudy, A. N., Benaceur, F., Patel, C., Goswami, D., ... & Bendahou, M. (2021). Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attachment and replication; molecular docking simulation. Egyptian Journal of Petroleum, 30(1), 33-43.
Muhseen, Z. T., Hameed, A. R., Al-Hasani, H. M., ul Qamar, M. T., & Li, G. (2020). Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: integrated computational approach. Journal of molecular liquids, 320(40), 114493.
Navarro, S., Reddy, R., Lee, J., Warburton, D., & Driscoll, B. (2017). Inhaled resveratrol treatments slow ageing-related degenerative changes in mouse lung. Thorax, 72(5), 451-459.
Of the International, C. S. G. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology, 5(4), 536.
Osés, S. M., Marcos, P., Azofra, P., de Pablo, A., Fernández-Muíño, M. Á., & Sancho, M. T. (2020). Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization. Antioxidants, 9(1), 75.
Owis, A. I., El-Hawary, M. S., El Amir, D., Aly, O. M., Abdelmohsen, U. R., & Kamel, M. S. (2020). Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 10(33), 19570-19575.
Owis, A. I., El-Hawary, M. S., El Amir, D., Aly, O. M., Abdelmohsen, U. R., & Kamel, M. S. (2020). Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 10(33), 19570-19575.
Peña-Sanhueza, D., Inostroza-Blancheteau, C., Ribera-Fonseca, A., & Reyes-Díaz, M. (2017). Anthocyanins in berries and their potential use in human health. Superfood and Functional Food-The Development of Superfoods and Their Roles as Medicine; Shiomi, N., Waisundara, V., Eds, 3(1), 155-172.
Poochi, S. P., Easwaran, M., Balasubramanian, B., Anbuselvam, M., Meyyazhagan, A., Park, S., ... & Kaul, T. (2020). Employing bioactive compounds derived from Ipomoea obscura (L.) to evaluate potential inhibitor for SARS‐CoV‐2 main protease and ACE2 protein. Food Frontiers, 1(2), 168-179.
Praditya, D., Kirchhoff, L., Brüning, J., Rachmawati, H., Steinmann, J., & Steinmann, E. (2019). Anti-infective properties of the golden spice curcumin. Frontiers in microbiology, 10(5), 912.
Puar, Y. R., Shanmugam, M. K., Fan, L., Arfuso, F., Sethi, G., & Tergaonkar, V. (2018). Evidence for the involvement of the master transcription factor NF-κB in cancer initiation and progression. Biomedicines, 6(3), 82.
Rakib, A., Nain, Z., Sami, S. A., Mahmud, S., Islam, A., Ahmed, S., ... & Simal-Gandara, J. (2021). A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: An in silico investigation. Briefings in bioinformatics, 22(2), 1476-1498.
Rangsinth, P., Sillapachaiyaporn, C., Nilkhet, S., Tencomnao, T., Ung, A. T., & Chuchawankul, S. (2021). Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: An in silico approach. Journal of traditional and complementary medicine, 11(2), 158-172.
Rouf, R., Uddin, S. J., Sarker, D. K., Islam, M. T., Ali, E. S., Shilpi, J. A., ... & Sarker, S. D. (2020). Anti-viral potential of garlic (Allium sativum) and it's organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in Food Science & Technology, 1(114), 219-234.
Silva Antonio, A., Wiedemann, L. S. M., & Veiga-Junior, V. F. (2020). Natural products' role against COVID-19. RSC Advances, 10(39), 23379-23393.
Seo, D. J., & Choi, C. (2021). Antiviral bioactive compounds of mushrooms and their antiviral mechanisms: a review. Viruses, 13(2), 350.
Singh, R., Bhardwaj, V. K., Sharma, J., Purohit, R., & Kumar, S. (2021). In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. Journal of traditional and complementary medicine, 368(6489), 409-412.
Sundararaman, A., Ray, M., Ravindra, P. V., & Halami, P. M. (2020). Role of probiotics to combat viral infections with emphasis on COVID-19. Applied microbiology and biotechnology, 3(1), 1-16.
Suwannarach, N., Kumla, J., Sujarit, K., Pattananandecha, T., Saenjum, C., & Lumyong, S. (2020). Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for coronaviruses. Molecules, 25(8), 1800.
Thuy, B. T. P., My, T. T. A., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Thi Phuong Loan, H., ... & Nhung, N. T. A. (2020). Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS omega, 5(14), 8312-8320.
Visioli, F., Bellomo, G., & Galli, C. (1998). Free radical-scavenging properties of olive oil polyphenols. Biochemical and biophysical research communications, 247(1), 60-64.
Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., ... & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412.
Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed research international, 3(6), 201-208.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Jardel Alves da Costa; Diêgo de Oliveira Lima; Ana Gessica dos Santos Carvalho; Jorddam Almondes Martins; Maria do Socorro dos Santos; Danielle Gomes de Sousa; Gildelânia da Silva Carvalho; Fatima Rosane Barros; Karine Rodrigues Ferreira; Gabrielly Martins de Barros; Renata Rodrigues Costa Fontinele; Jéssica Ellen Alves da Silva; Antônia Janikely Silva Santos; Lucineide de Brito Rocha
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.