Compostos bioativos derivados de matrizes alimentares com potencial terapêutico para a infecção por Sars-Cov-2: Uma revisão de estudos in silico

Autores

DOI:

https://doi.org/10.33448/rsd-v10i8.17178

Palavras-chave:

Compostos bioativos derivados de alimentos; Replicação; SARS-CoV-2; In silico.

Resumo

O trabalho objetivou realizar revisão da literatura acerca das evidências científicas disponíveis sobre o potencial terapêutico que alguns compostos bioativos podem exercer sobre a infecção por Sars-Cov-2, a partir de testes realizados com as técnicas de docking molecular. A revisão integrativa foi realizada a partir de buscas nos bancos de dados eletrônicos acerca de publicações de artigos originais escritos em inglês e português, entre os anos de 2019 a 2021. As buscas foram realizadas nas bases de dados: Science Direct (Biblioteca virtual da Elsevier), Scielo (Scientific Electronic Library Online), Pubmed/Medline (Medical Literature Analysis and Retrievel System Online) e BVS (Biblioteca Virtual em saúde), utilizando como descritores em saúde de acordo com a plataforma DeCS/MeSH as palavras: Compostos bioativos derivados de alimentos, replicação, SARS-CoV-2, in silico, nos idiomas inglês e português, utilizando o termo ‘’and’’ como operador booleano. Após o processo de busca e seleção utilizando os critérios citados na metodologia, foram selecionados 6 artigos. Produtos naturais derivados de matrizes alimentares podem ser uma fonte valiosa de novos compostos bioativos para combater a pandemia da COVID-19. De acordo com os resultados relatados nesta revisão, vários compostos naturais, incluindo polifenóis e flavonóides, mostraram a capacidade de prevenir a replicação do SARS-CoV-2 por meio da inibição das principais proteases do vírus, para assim mitigar as consequências clínicas da infecção, de acordo com a técnica in silico utilizada.

Referências

Ahn, K. S., Sethi, G., Jain, A. K., Jaiswal, A. K., & Aggarwal, B. B. (2006). Genetic deletion of NAD (P) H: quinone oxidoreductase 1 abrogates activation of nuclear factor-κB, IκBα kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis. Journal of Biological Chemistry, 281(29), 19798-19808.

Al-Zamely, H. A., & Al-Tamemi, Z. S. M. (2018). Role of hydroxytyrosol in ameliorating effects of high fat diet on male rats CNS. Journal of Pharmaceutical Sciences and Research, 10(10), 2448-2453.

Arora, S., Lohiya, G., Moharir, K., Shah, S., & Yende, S. (2020). Identification of Potential Flavonoid Inhibitors of the SARS-CoV-2 Main Protease 6YNQ: A Molecular Docking Study. Digital Chinese Medicine, 3(4), 239-248.

Avasarala, S., Zhang, F., Liu, G., Wang, R., London, S. D., & London, L. (2013). Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PloS one, 8(2), e57285.

Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in bioinformatics. 2(1), 23-28.

But, P. P. H., Ooi, V. E. C., He, Y. H., Lee, S. H. S., Lee, S. F., & Lin, R. C. (2001). Antiviral amentoflavone from Selaginella sinensis. Biological and Pharmaceutical Bulletin, 24(3), 311-312.

Chen, T. Y., Chen, D. Y., Wen, H. W., Ou, J. L., Chiou, S. S., Chen, J. M., ... & Hsu, W. L. (2013). Inhibition of enveloped viruses infectivity by curcumin. PloS one, 8(5), e62482.

Christy, M. P., Uekusa, Y., Gerwick, L., & Gerwick, W. H. (2020). Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. Journal of natural products. 10(39), 239-241.

Costa, J. A da., Lima, D. de O.., Moreira, IPM., Santos, BS., Barros, FR., Silva, TR., Barros, GM de., Gomes, ELV da S.., Sousa, ARS., Fontinele, RRC., Veloso, FK de S.., Cruz, R. de CM da., Sousa, A. de OL., Costa, DD de M.., Macedo, MI de., Rocha, L. de B.., Ramos, E. de C.., Silva, CM da., Taveira, LC., & Anjos, NVB dos. (2021). Terapia nutricional para pacientes com Covid-19 em terapia intensiva: uma abordagem para estudos retrospectivos. Research, Society and Development, 10 (5), e24810514861.

Dong, C., Ni, L., Ye, F., Chen, M. L., Feng, Y., Deng, Y. Q., ... & Chen, F. (2020). Characterization of anti-viral immunity in recovered individuals infected by SARS-CoV-2. MedRxiv. 8(39), 187-232.

Gates, B. (2020). Responding to Covid-19—a once-in-a-century pandemic?. New England Journal of Medicine, 382(18), 1677-1679.

Gibbs, J. W. (1873). A method of geometrical representation of the thermodynamic properties by means of surfaces. Transactions of Connecticut Academy of Arts and Sciences, 10(5), 382-404.

Gill, H., & Walker, G. (2008). Selenium, immune function and resistance to viral infections. Nutrition & dietetics, 65(12), S41-S47.

Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1-10.

Huang, J., Tao, G., Liu, J., Cai, J., Huang, Z., & Chen, J. X. (2020). Current prevention of COVID-19: Natural products and herbal medicine. Frontiers in Pharmacology, 11(7) 342-356.

Kalligeros, M., Shehadeh, F., Mylona, E. K., Benitez, G., Beckwith, C. G., Chan, P. A., & Mylonakis, E. (2020). Association of obesity with disease severity among patients with coronavirus disease 2019. Obesity, 28(7), 1200-1204.

Khalifa, I., Nawaz, A., Sobhy, R., Althwab, S. A., & Barakat, H. (2020). Polyacylated anthocyanins constructively network with catalytic dyad residues of 3CLpro of 2019-nCoV than monomeric anthocyanins: A structural-relationship activity study with 10 anthocyanins using in-silico approaches. Journal of Molecular Graphics and Modelling, 100, 107690.

Kozak, J. J., Gray, H. B., & Garza-López, R. A. (2020). Structural stability of the SARS-CoV-2 main protease: Can metal ions affect function?. Journal of Inorganic Biochemistry, 211(54), 111179.

Kumar, V., Dhanjal, J. K., Kaul, S. C., Wadhwa, R., & Sundar, D. (2020). Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure and Dynamics, 2(3), 1-13.

Lakshmi, B., Viswanath, B., & Sai Gopal, D. V. R. (2013). Probiotics as antiviral agents in shrimp aquaculture. Journal of pathogens, 13(3), 45-54.

Lorenzo, V. P. (2016). Estudos in silico com alcaloides oriundos de produtos naturais. Repositório Institucional da UFPB, 1 (1), 39-41.

Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends, 14(1), 69-71.

Mathew, D., & Hsu, W. L. (2018). Antiviral potential of curcumin. Journal of functional foods, 40(4), 692-699.

McMichael, T. M., Currie, D. W., Clark, S., Pogosjans, S., Kay, M., Schwartz, N. G., ... & Duchin, J. S. (2020). Epidemiology of Covid-19 in a long-term care facility in King County, Washington. New England Journal of Medicine, 382(21), 2005-2011.

Messaoudi, O., Gouzi, H., El-Hoshoudy, A. N., Benaceur, F., Patel, C., Goswami, D., ... & Bendahou, M. (2021). Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attachment and replication; molecular docking simulation. Egyptian Journal of Petroleum, 30(1), 33-43.

Muhseen, Z. T., Hameed, A. R., Al-Hasani, H. M., ul Qamar, M. T., & Li, G. (2020). Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: integrated computational approach. Journal of molecular liquids, 320(40), 114493.

Navarro, S., Reddy, R., Lee, J., Warburton, D., & Driscoll, B. (2017). Inhaled resveratrol treatments slow ageing-related degenerative changes in mouse lung. Thorax, 72(5), 451-459.

Of the International, C. S. G. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology, 5(4), 536.

Osés, S. M., Marcos, P., Azofra, P., de Pablo, A., Fernández-Muíño, M. Á., & Sancho, M. T. (2020). Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization. Antioxidants, 9(1), 75.

Owis, A. I., El-Hawary, M. S., El Amir, D., Aly, O. M., Abdelmohsen, U. R., & Kamel, M. S. (2020). Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 10(33), 19570-19575.

Owis, A. I., El-Hawary, M. S., El Amir, D., Aly, O. M., Abdelmohsen, U. R., & Kamel, M. S. (2020). Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 10(33), 19570-19575.

Peña-Sanhueza, D., Inostroza-Blancheteau, C., Ribera-Fonseca, A., & Reyes-Díaz, M. (2017). Anthocyanins in berries and their potential use in human health. Superfood and Functional Food-The Development of Superfoods and Their Roles as Medicine; Shiomi, N., Waisundara, V., Eds, 3(1), 155-172.

Poochi, S. P., Easwaran, M., Balasubramanian, B., Anbuselvam, M., Meyyazhagan, A., Park, S., ... & Kaul, T. (2020). Employing bioactive compounds derived from Ipomoea obscura (L.) to evaluate potential inhibitor for SARS‐CoV‐2 main protease and ACE2 protein. Food Frontiers, 1(2), 168-179.

Praditya, D., Kirchhoff, L., Brüning, J., Rachmawati, H., Steinmann, J., & Steinmann, E. (2019). Anti-infective properties of the golden spice curcumin. Frontiers in microbiology, 10(5), 912.

Puar, Y. R., Shanmugam, M. K., Fan, L., Arfuso, F., Sethi, G., & Tergaonkar, V. (2018). Evidence for the involvement of the master transcription factor NF-κB in cancer initiation and progression. Biomedicines, 6(3), 82.

Rakib, A., Nain, Z., Sami, S. A., Mahmud, S., Islam, A., Ahmed, S., ... & Simal-Gandara, J. (2021). A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: An in silico investigation. Briefings in bioinformatics, 22(2), 1476-1498.

Rangsinth, P., Sillapachaiyaporn, C., Nilkhet, S., Tencomnao, T., Ung, A. T., & Chuchawankul, S. (2021). Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: An in silico approach. Journal of traditional and complementary medicine, 11(2), 158-172.

Rouf, R., Uddin, S. J., Sarker, D. K., Islam, M. T., Ali, E. S., Shilpi, J. A., ... & Sarker, S. D. (2020). Anti-viral potential of garlic (Allium sativum) and it's organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in Food Science & Technology, 1(114), 219-234.

Silva Antonio, A., Wiedemann, L. S. M., & Veiga-Junior, V. F. (2020). Natural products' role against COVID-19. RSC Advances, 10(39), 23379-23393.

Seo, D. J., & Choi, C. (2021). Antiviral bioactive compounds of mushrooms and their antiviral mechanisms: a review. Viruses, 13(2), 350.

Singh, R., Bhardwaj, V. K., Sharma, J., Purohit, R., & Kumar, S. (2021). In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. Journal of traditional and complementary medicine, 368(6489), 409-412.

Sundararaman, A., Ray, M., Ravindra, P. V., & Halami, P. M. (2020). Role of probiotics to combat viral infections with emphasis on COVID-19. Applied microbiology and biotechnology, 3(1), 1-16.

Suwannarach, N., Kumla, J., Sujarit, K., Pattananandecha, T., Saenjum, C., & Lumyong, S. (2020). Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for coronaviruses. Molecules, 25(8), 1800.

Thuy, B. T. P., My, T. T. A., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Thi Phuong Loan, H., ... & Nhung, N. T. A. (2020). Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS omega, 5(14), 8312-8320.

Visioli, F., Bellomo, G., & Galli, C. (1998). Free radical-scavenging properties of olive oil polyphenols. Biochemical and biophysical research communications, 247(1), 60-64.

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., ... & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412.

Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed research international, 3(6), 201-208.

Downloads

Publicado

10/07/2021

Como Citar

COSTA, J. A. da .; LIMA, D. de O. .; CARVALHO, A. G. dos S. .; MARTINS, J. A. .; SANTOS, M. do S. dos .; SOUSA, D. G. de .; CARVALHO, G. da S. .; BARROS, F. R. .; FERREIRA, K. R. .; BARROS, G. M. de .; FONTINELE, R. R. C. .; SILVA, J. E. A. da .; SANTOS, A. J. S. .; ROCHA, L. de B. . Compostos bioativos derivados de matrizes alimentares com potencial terapêutico para a infecção por Sars-Cov-2: Uma revisão de estudos in silico. Research, Society and Development, [S. l.], v. 10, n. 8, p. e17810817178, 2021. DOI: 10.33448/rsd-v10i8.17178. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17178. Acesso em: 23 nov. 2024.

Edição

Seção

Ciências da Saúde