Efectos farmacológicos de la hidroxicloroquina en pacientes con COVID-19: Revisión sistemática de la literatura
DOI:
https://doi.org/10.33448/rsd-v10i8.17193Palabras clave:
Hidroxicloroquina; COVID-19; Coronavirus; Tratamiento.Resumen
Un brote del nuevo coronavirus (COVID-19) se inició en diciembre de 2019, y se extendió por toda China, extendiéndose al mundo en poco tiempo, lo que requiere búsquedas inmediatas para su tratamiento. Por lo tanto, el uso de cloroquina (CQ) e hidroxicloroquina (HCQ) ha despertado interés en COVID-19. Esta revisión sistemática sigue los elementos de informe indicados para las revisiones sistemáticas y las Pautas de metaanálisis (PRISMA). Los descriptores fueron seleccionados: “SARS-CoV-2”, “COVID-19”, “Hidroxicloroquina” y “Cloroquina” e incluidos en las bases de datos Science Direct, Biblioteca Nacional de Medicina de los Estados Unidos (PubMed), Información bibliográfica latinoamericana en salud. ciencias (LILACS), Scientific Electronic Library Online (SciELO) y Web of Science para la búsqueda de estudios. Después del cribado, se encontraron un total de 6.339 estudios. Después de leer y aplicar los criterios de elegibilidad, se seleccionaron un total de 8 artículos para preparar los resultados de esta revisión. Los resultados de los estudios mostraron que el uso de HCQ tiene resultados sin una mejora significativa en el cuadro clínico, incluida la asociación con eventos adversos (incluidos los graves) en pacientes con COVID-19. Por lo tanto, los ensayos clínicos aleatorizados no proporcionaron evidencia de la eficacia de HCQ en pacientes con COVID-19, lo que demuestra que un HCQ no es significativamente efectivo y tiene resultados negativos con respecto a su seguridad para pacientes con COVID-19.
Citas
Barbosa, J., Kaitis, D., Freedman, R., Le, K., & Lin, X. (2020). Clinical outcomes of hydroxychloroquine in hospitalized patients with COVID-19: a quasi-randomized comparative study. N Engl J Med, 1, 8882.
Borba, M., de Almeida Val, F., Sampaio, V. S., Alexandre, M. A., Melo, G. C., Brito, M., & Lacerda, M. (2020). Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: Preliminary safety results of a randomized, double-blinded, phase IIb clinical trial (CloroCovid-19 Study). MedRxiv.
Bosseboeuf, E., Aubry, M., Nhan, T., De Pina, J. J., Rolain, J. M., Raoult, D., & Musso, D. (2018). Azithromycin inhibits the replication of Zika virus. J Antivir Antiretrovir, 10(1), 6-11.
Boulware, D. R., Pullen, M. F., Bangdiwala, A. S., Pastick, K. A., Lofgren, S. M., Okafor, E. C., & Hullsiek, K. H. (2020). A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. New England Journal of Medicine, 383(6), 517-525.
Campbell, M., McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S. E., Ellis, S., HartmannBoyce, J., Ryan, R., Shepperd, S., Thomas, J., et al. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ 368, l6890.
Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. In Seminars in immunopathology (39, 529-539). Springer Berlin Heidelberg.
Chen, J., Liu, D., Liu, L., Liu, P., Xu, Q., Xia, L., & Lu, H. (2020). A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). Journal of Zhejiang University (Medical Science), 49(1), 0-0.
Colson, P., Rolain, J. M., Lagier, J. C., Brouqui, P., & Raoult, D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents, 55(4), 105932.
Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192.
Donnelly, C. A., Ghani, A. C., Leung, G. M., Hedley, A. J., Fraser, C., Riley, S., & Anderson, R. M. (2003). Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. The Lancet, 361(9371), 1761-1766.
Fantini, J., Di Scala, C., Chahinian, H., & Yahi, N. (2020). Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International journal of antimicrobial agents, 55(5), 105960.
Fiolet, T., Guihur, A., Rebeaud, M. E., Mulot, M., Peiffer-Smadja, N., & Mahamat-Saleh, Y. (2021). Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis. Clinical microbiology and infection, 27(1), 19-27.
Forni, D., Cagliani, R., Clerici, M., & Sironi, M. (2017). Molecular evolution of human coronavirus genomes. Trends in microbiology, 25(1), 35-48.
Fteiha, B., Karameh, H., Kurd, R., Ziff‐Werman, B., Feldman, I., Bnaya, A., & Ben‐Chetrit, E. (2020). QTc prolongation among hydroxychloroquine sulfate‐treated COVID‐19 patients: An observational study. International Journal of Clinical Practice, e13767.
Gabriels, J., Saleh, M., Chang, D., & Epstein, L. M. (2020). Inpatient use of mobile continuous telemetry for COVID-19 patients treated with hydroxychloroquine and azithromycin. HeartRhythm Case Reports, 6(5), 241-243.
Gautret, P., Lagier, J. C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents, 56(1), 105949.
Goel, P., & Gerriets, V. (2019). Chloroquine.
Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., & Leong, A. S. Y. (2005). Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine, 202(3), 415-424.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280.
Hu, T. Y., Frieman, M., & Wolfram, J. (2020). Insights from nanomedicine into chloroquine efficacy against COVID-19. Nature nanotechnology, 15(4), 247-249.
Huang, M., Tang, T., Pang, P., Li, M., Ma, R., Lu, J., & Shan, H. (2020). Treating COVID-19 with chloroquine. Journal of molecular cell biology, 12(4), 322-325.
Hui, D. S., Azhar, E. I., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. International journal of infectious diseases, 91, 264-266.
Ip, A., Ahn, J., Zhou, Y., Goy, A. H., Hansen, E., Pecora, A. L., & Goldberg, S. L. (2021). Hydroxychloroquine in the treatment of outpatients with mildly symptomatic COVID-19: a multi-center observational study. BMC Infectious Diseases, 21(1), 1-12.
Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., & Nagata, N. (2019). TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. Journal of virology, 93(6), e01815-18.
Jia, H. P., Look, D. C., Shi, L., Hickey, M., Pewe, L., Netland, J., & McCray Jr, P. B. (2005). ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. Journal of virology, 79(23), 14614-14621.
Jie, Z., He, H., Xi, H., & Zhi, Z. (2020). Multicenter collaboration group of Department of Science and Technology of Guangdong Province and Health Commission of Guangdong Province for chloroquine in the treatment of novel coronavirus pneumonia. Expert Consensus on Chloroquine Phosphate for the Treatment of Novel Coronavirus Pneumonia [in Chinese], 10, 1001-0939.
Keyaerts, E., Vijgen, L., Maes, P., Neyts, J., & Van Ranst, M. (2004). In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochemical and biophysical research communications, 323(1), 264-268.
Kim, T. S., Heinlein, C., Hackman, R. C., & Nelson, P. S. (2006). Phenotypic analysis of mice lacking the Tmprss2-encoded protease. Molecular and cellular biology, 26(3), 965-975.
Kupferschmidt, K., & Cohen, J. (2020). Race to find COVID-19 treatments accelerates.
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454.
Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., ... & Wang, M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell discovery, 6(1), 1-4.
Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends, 14(1), 69-71.
Madrid, P. B., Panchal, R. G., Warren, T. K., Shurtleff, A. C., Endsley, A. N., Green, C. E., & Tanga, M. J. (2015). Evaluation of Ebola virus inhibitors for drug repurposing. ACS infectious diseases, 1(7), 317-326.
Marmor, M. F. (2020). COVID-19 and chloroquine/hydroxychloroquine: is there ophthalmological concern?. American journal of ophthalmology, 216, A1-A2.
Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., & Taguchi, F. (2010). Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. Journal of virology, 84(24), 12658-12664.
Menachery, V. D., Dinnon III, K. H., Yount Jr, B. L., McAnarney, E. T., Gralinski, L. E., Hale, A., & Baric, R. S. (2020). Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. Journal of virology, 94(5), e01774-19.
Millet, J. K., & Whittaker, G. R. (2014). Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proceedings of the National Academy of Sciences, 111(42), 15214-15219.
Mitra, R. L., Greenstein, S. A., & Epstein, L. M. (2020). An algorithm for managing QT prolongation in coronavirus disease 2019 (COVID-19) patients treated with either chloroquine or hydroxychloroquine in conjunction with azithromycin: Possible benefits of intravenous lidocaine. HeartRhythm case reports, 6(5), 244.
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Medicine 18, e1003583.
Proano, C., & Kimball, G. P. (2019). Hydroxychloroquine retinal toxicity. New England Journal of Medicine, 380(17).
Retallack, H., Di Lullo, E., Arias, C., Knopp, K. A., Laurie, M. T., Sandoval-Espinosa, C., & DeRisi, J. L. (2016). Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences, 113(50), 14408-14413.
Riou, J., & Althaus, C. L. (2020). Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance, 25(4), 2000058.
Rodriguez-Morales, A. J., Bonilla-Aldana, D. K., Balbin-Ramon, G. J., Rabaan, A. A., Sah, R., Paniz-Mondolfi, A., & Esposito, S. (2020). History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic. Infez Med, 28(1), 3-5.
Schrezenmeier, E., & Dörner, T. (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 16(3), 155-166.
Self, W. H., Semler, M. W., Leither, L. M., Casey, J. D., Angus, D. C., Brower, R. G., & Brown, S. M. (2020). Effect of hydroxychloroquine on clinical status at 14 days in hospitalized patients with COVID-19: a randomized clinical trial. JAMA, 324(21), 2165-2176.
Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., & Gallagher, T. (2010). A transmembrane serine protease is linked to the SARS coronavirus receptor and activates virus entry. Journal of Virology.
Skipper, C. P., Pastick, K. A., Engen, N. W., Bangdiwala, A. S., Abassi, M., Lofgren, S. M., & Boulware, D. R. (2020). Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Annals of internal medicine, 173(8), 623-631.
Sogut, O., Can, M. M., Guven, R., Kaplan, O., Ergenc, H., Umit, T. B., ... & Cakmak, S. (2021). Safety and efficacy of hydroxychloroquine in 152 outpatients with confirmed COVID-19: a pilot observational study. The American journal of emergency medicine, 40, 41-46.
Van Den Brand, J. M. A., Haagmans, B. L., van Riel, D., Osterhaus, A. D. M. E., & Kuiken, T. (2014). The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. Journal of comparative pathology, 151(1), 83-112.
Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal, 2(1), 1-10.
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research, 30(3), 269-271.
World Health Organization. World health statistics 2021. World Health Organization, 2021. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 20 05 2021).
Xia, W., Shao, J., Guo, Y., Peng, X., Li, Z., & Hu, D. (2020). Clinical and CT features in pediatric patients with COVID‐19 infection: different points from adults. Pediatric pulmonology, 55(5), 1169-1174.
Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., & Li, F. (2014). Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proceedings of the National Academy of Sciences, 111(34), 12516-12521.
Yazdany, J., & Kim, A. H. (2020). Use of hydroxychloroquine and chloroquine during the COVID-19 pandemic: what every clinician should know.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England journal of medicine.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Francisco Emanoel Alves de Araújo; João Matheus Caé da Rocha; Lucas Emmanuel Rocha de Moura Marques; Kellyson Lopes da Silva Macedo; Paloma Katlheen Moura Melo; Gabriella Mendes Duarte; Francisco Irochima Pinheiro; Fausto Pierdoná Guzen
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.