Ácidos grasos insaturados como alimento funcional para el tratamiento de la Diabetes mellitus tipo 2

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i9.17231

Palabras clave:

Ácidos Grasos Monoinsaturados; Compuestos bioactivos; Propiedades funcionales; Resistencia a la insulina; Transportador de glucosa tipo 4.

Resumen

Varios estudios apuntan a una relación entre los ácidos grasos insaturados, la función pancreática mejorada y la secreción de insulina. En este contexto, esta revisión presenta los hallazgos más recientes sobre la fisiopatología de la diabetes mellitus tipo 2, el mecanismo de acción de los ácidos grasos insaturados sobre la función pancreática y los estudios clínicos en pacientes diabéticos. Aquí evaluamos artículos de MedLine/PubMed y la base de datos directa de Science, publicados entre 2014 y 2020. De los 637 resultados, se seleccionaron 13. A partir de su análisis, vemos evidencia de que los ácidos grasos mono y poliinsaturados pueden mejorar el control glucémico y reducir el riesgo cardiovascular. La acción antidiabética más citada en la literatura con respecto a los ácidos grasos monoinsaturados es la capacidad de preservar la señalización de la insulina; por otro lado, el de los ácidos grasos poliinsaturados consiste en un aumento de la expresión del transportador de glucosa tipo 4. Sin embargo, en futuras investigaciones se debe considerar una comprensión completa de la relación entre los ácidos grasos, la insulina y la inflamación.

Citas

American Diabetes Association, A. D. (2020). Standards of Medical Care in Diabetes—2020 Abridged for Primary Care Providers. Clinical Diabetes, 38(1), 10–38. https://doi.org/10.2337/cd20-as01

Baynes, H. W., Mideksa, S., & Ambachew, S. (2018). The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic β-cells and insulin action. Adipocyte, 7(2), 81–87. https://doi.org/10.1080/21623945.2018.1443662

Berlanga-Acosta, J., Mendoza-Marí, Y., Rodríguez-Rodríguez, N., García del Barco Herrera, D., García-Ojalvo, A., Fernández-Mayola, M., Guillén-Nieto, G., & Valdés-Sosa, P. A. (2020). Burn injury insulin resistance and central nervous system complications: A review. Burns Open, 4(2), 41–52. https://doi.org/10.1016/j.burnso.2020.02.001

Cagen, L. M., Deng, X., Wilcox, H. G., Park, E. A., Raghow, R., & Elam, M. B. (2005). Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements. Biochemical Journal, 385(Pt 1), 207–216. https://doi.org/10.1042/BJ20040162

Chen, L., Gnanaraj, C., Arulselvan, P., El-Seedi, H., & Teng, H. (2019). A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of Type 2 Diabetes. Trends in Food Science & Technology, 85, 149–162. https://doi.org/10.1016/j.tifs.2018.11.026

Chen, L., Magliano, D. J., & Zimmet, P. Z. (2011). The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nature Reviews. Endocrinology, 8(4), 228–236. https://doi.org/10.1038/nrendo.2011.183

Erkkilä, A. T., Lichtenstein, A. H., Mozaffarian, D., & Herrington, D. M. (2004). Fish intake is associated with a reduced progression of coronary artery atherosclerosis in postmenopausal women with coronary artery disease. The American Journal of Clinical Nutrition, 80(3), 626–632. https://doi.org/10.1093/ajcn/80.3.626

Fayh, A. P. T., Borges, K., Cunha, G. S., Krause, M., Rocha, R., de Bittencourt, P. I. H., Moreira, J. C. F., Friedman, R., da Silva Rossato, J., Fernandes, J. R., & Reischak-Oliveira, A. (2018). Effects of n-3 fatty acids and exercise on oxidative stress parameters in type 2 diabetic: A randomized clinical trial. Journal of the International Society of Sports Nutrition, 15(1), 18. https://doi.org/10.1186/s12970-018-0222-2

Fox, C. S., Golden, S. H., Anderson, C., Bray, G. A., Burke, L. E., de Boer, I. H., Deedwania, P., Eckel, R. H., Ershow, A. G., Fradkin, J., Inzucchi, S. E., Kosiborod, M., Nelson, R. G., Patel, M. J., Pignone, M., Quinn, L., Schauer, P. R., Selvin, E., & Vafiadis, D. K. (2015). Update on Prevention of Cardiovascular Disease in Adults With Type 2 Diabetes Mellitus in Light of Recent Evidence: A Scientific Statement From the American Heart Association and the American Diabetes Association. Diabetes Care, 38(9), 1777–1803. https://doi.org/10.2337/dci15-0012

Fuller, N. R., Sainsbury, A., Caterson, I. D., Denyer, G., Fong, M., Gerofi, J., Leung, C., Lau, N. S., Williams, K. H., Januszewski, A. S., Jenkins, A. J., & Markovic, T. P. (2018). Effect of a high-egg diet on cardiometabolic risk factors in people with type 2 diabetes: The Diabetes and Egg (DIABEGG) Study—randomized weight-loss and follow-up phase. The American Journal of Clinical Nutrition, 107(6), 921–931. https://doi.org/10.1093/ajcn/nqy048

Huang, S., & Czech, M. P. (2007). The GLUT4 glucose transporter. Cell Metabolism, 5(4), 237–252. https://doi.org/10.1016/j.cmet.2007.03.006

Jaganathan, R., Ravindran, R., & Dhanasekaran, S. (2018). Emerging Role of Adipocytokines in Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. Canadian Journal of Diabetes, 42(4), 446-456.e1. https://doi.org/10.1016/j.jcjd.2017.10.040

Kaur, N., Chugh, V., & Gupta, A. K. (2014). Essential fatty acids as functional components of foods- a review. Journal of Food Science and Technology, 51(10), 2289–2303. https://doi.org/10.1007/s13197-012-0677-0

Keapai, W., Apichai, S., Amornlerdpison, D., & Lailerd, N. (2016). Evaluation of fish oil-rich in MUFAs for anti-diabetic and anti-inflammation potential in experimental type 2 diabetic rats. The Korean Journal of Physiology & Pharmacology : Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology, 20(6), 581–593. https://doi.org/10.4196/kjpp.2016.20.6.581

Lenighan, Y. M., McNulty, B. A., & Roche, H. M. (2019). Dietary fat composition: Replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. Proceedings of the Nutrition Society, 78(02), 234–245. https://doi.org/10.1017/S0029665118002793

Liu, R., Chen, L., Wang, Y., Zhang, G., Cheng, Y., Feng, Z., Bai, X., & Liu, J. (2020). High ratio of ω-3/ω-6 polyunsaturated fatty acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice. The Journal of Nutritional Biochemistry, 79, 108330. https://doi.org/10.1016/j.jnutbio.2019.108330

Look AHEAD Research Group, Wing, R. R., Bolin, P., Brancati, F. L., Bray, G. A., Clark, J. M., Coday, M., Crow, R. S., Curtis, J. M., Egan, C. M., Espeland, M. A., Evans, M., Foreyt, J. P., Ghazarian, S., Gregg, E. W., Harrison, B., Hazuda, H. P., Hill, J. O., Horton, E. S., … Yanovski, S. Z. (2013). Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. The New England Journal of Medicine, 369(2), 145–154. https://doi.org/10.1056/NEJMoa1212914

Mirmiran, P., Esfandyari, S., Moghadam, S. K., Bahadoran, Z., & Azizi, F. (2018). Fatty acid quality and quantity of diet and risk of type 2 diabetes in adults: Tehran Lipid and Glucose Study. Journal of Diabetes and Its Complications, 32(7), 655–659. https://doi.org/10.1016/j.jdiacomp.2018.05.003

Palomer, X., Pizarro-Delgado, J., Barroso, E., & Vázquez-Carrera, M. (2018). Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends in Endocrinology and Metabolism: TEM, 29(3), 178–190. https://doi.org/10.1016/j.tem.2017.11.009

Paquet, C., Propsting, S. L., & Daniel, M. (2014). Total n-3 fatty acid and SFA intakes in relation to insulin resistance in a Canadian First Nation at risk for the development of type 2 diabetes. Public Health Nutrition, 17(6), 1337–1341. https://doi.org/10.1017/S1368980013000542

Rabe, K., Lehrke, M., Parhofer, K. G., & Broedl, U. C. (2008). Adipokines and insulin resistance. Molecular Medicine (Cambridge, Mass.), 14(11–12), 741–751. https://doi.org/10.2119/2008-00058.

Rosca, M. G., Vazquez, E. J., Chen, Q., Kerner, J., Kern, T. S., & Hoppel, C. L. (2012). Oxidation of Fatty Acids Is the Source of Increased Mitochondrial Reactive Oxygen Species Production in Kidney Cortical Tubules in Early Diabetes. Diabetes, 61(8), 2074–2083. https://doi.org/10.2337/db11-1437

Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., Williams, R., & IDF Diabetes Atlas Committee. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843

Salas-Salvadó, J., Bulló, M., Estruch, R., Ros, E., Covas, M.-I., Ibarrola-Jurado, N., Corella, D., Arós, F., Gómez-Gracia, E., Ruiz-Gutiérrez, V., Romaguera, D., Lapetra, J., Lamuela-Raventós, R. M., Serra-Majem, L., Pintó, X., Basora, J., Muñoz, M. A., Sorlí, J. V., & Martínez-González, M. A. (2014). Prevention of diabetes with Mediterranean diets: A subgroup analysis of a randomized trial. Annals of Internal Medicine, 160(1), 1–10. https://doi.org/10.7326/M13-1725

Schwab, U., Lauritzen, L., Tholstrup, T., Haldorsson, T. I., Riserus, U., Uusitupa, M., & Becker, W. (2014). Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food & Nutrition Research, 58. https://doi.org/10.3402/fnr.v58.25145

Santos, L. R. B., & Fleming, I. (2020). Role of cytochrome P450-derived, polyunsaturated fatty acid mediators in diabetes and the metabolic syndrome. Prostaglandins & Other Lipid Mediators, 148, 106407. https://doi.org/10.1016/j.prostaglandins.2019.106407

Shah, M. S., & Brownlee, M. (2016). Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes. Circulation research, 118(11), 1808–1829. https://doi.org/10.1161/CIRCRESAHA.116.306923

Tan, E., Khoo, J., Gani, L. U., Malakar, R. D., Tay, T. L., Tirukonda, P. S., Kam, J. W., Tin, A. S., & Tang, T. Y. (2019). Effect of multidisciplinary intensive targeted care in improving diabetes mellitus outcomes: A randomized controlled pilot study – the Integrated Diabetes Education, Awareness and Lifestyle modification in Singapore (IDEALS) Program. Trials, 20(1), 549. https://doi.org/10.1186/s13063-019-3601-3

Uusitupa, M., Hermansen, K., Savolainen, M. J., Schwab, U., Kolehmainen, M., Brader, L., Mortensen, L. S., Cloetens, L., Johansson-Persson, A., Onning, G., Landin-Olsson, M., Herzig, K.-H., Hukkanen, J., Rosqvist, F., Iggman, D., Paananen, J., Pulkki, K. J., Siloaho, M., Dragsted, L., … Akesson, B. (2013). Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome—A randomized study (SYSDIET). Journal of Internal Medicine, 274(1), 52–66. https://doi.org/10.1111/joim.12044

Wanders, A. J., Alssema, M., de Koning, E. J. P., le Cessie, S., de Vries, J. H., Zock, P. L., Rosendaal, F. R., Heijer, M. den, & de Mutsert, R. (2017). Fatty acid intake and its dietary sources in relation with markers of type 2 diabetes risk: The NEO study. European Journal of Clinical Nutrition, 71(2), 245–251. https://doi.org/10.1038/ejcn.2016.204

Wang, J., He, Y., Yu, D., Jin, L., Gong, X., & Zhang, B. (2020). Perilla oil regulates intestinal microbiota and alleviates insulin resistance through the PI3K/AKT signaling pathway in type-2 diabetic KKAy mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 135, 110965. https://doi.org/10.1016/j.fct.2019.110965

World Health Assembly. (2013). Follow-up to the political declaration of the high-level meeting of the general assembly on the prevention and control of non-communicable diseases. Geneva: WHA. Recuperado em: 20 jul. 2021, de

https://apps.who.int/iris/bitstream/handle/10665/150161/A66_R10-en.pdf?sequence=1&isAllowed=y.

World Health Organization. (2018). Noncommunicable diseases: Country profiles 2018. World Health Organization. Recuperado 30 de junho de 2021, de https://www.who.int/publications-detail-redirect/ncd-country-profiles-2018

World Health Organization. (2020). WHO Integrated chronic disease prevention and control. WHO - World Health Organization; World Health Organization. https://www.who.int/chp/about/integrated_cd/en/

Zhang, Z., Liu, H., & Liu, J. (2019). Akt activation: A potential strategy to ameliorate insulin resistance. Diabetes Research and Clinical Practice, 156, 107092. https://doi.org/10.1016/j.diabres.2017.10.004

Zierath, J. R. (2019). Major Advances and Discoveries in Diabetes—2019 in Review. Current Diabetes Reports, 19(11). https://doi.org/10.1007/s11892-019-1255-x

Zong, G., Liu, G., Willett, W. C., Wanders, A. J., Alssema, M., Zock, P. L., Hu, F. B., & Sun, Q. (2019). Associations Between Linoleic Acid Intake and Incident Type 2 Diabetes Among U.S. Men and Women. Diabetes Care, 42(8), 1406–1413. https://doi.org/10.2337/dc19-0412

Descargas

Publicado

29/07/2021

Cómo citar

CARDOSO, N. S.; CRUZ, J. R. de S.; PAULA, R. A. de O.; DUARTE, S. M. da S.; RODRIGUES, M. R.; PAULA, F. B. de A. Ácidos grasos insaturados como alimento funcional para el tratamiento de la Diabetes mellitus tipo 2. Research, Society and Development, [S. l.], v. 10, n. 9, p. e41410917231, 2021. DOI: 10.33448/rsd-v10i9.17231. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17231. Acesso em: 4 ene. 2025.

Número

Sección

Revisiones