El papel de los antiparasitos y los esteroides en el tratamiento del Covid-19
DOI:
https://doi.org/10.33448/rsd-v10i8.17300Palabras clave:
Ivermectina; Invertebrados; Cloroquina; Nitazoxanida; Glucocorticoides; Vacuna para el COVID-19; Virus del SARS; Infecciones por coronavirus.Resumen
Background: COVID-19 ha surgido como una pandemia que se extendió por todo el mundo en menos de 6 meses, dejando cientos de miles de muertos. Sorprendentemente, el antiguo arsenal de medicamentos se ha aplicado ahora como una opción de tratamiento. Objetivo: El objetivo de este artículo fue realizar una revisión de la literatura sobre los antiparasitarios cloroquina, ivermectina, nitazoxanida; así como glucocorticoides como posibles agentes terapéuticos para ser aplicados en pacientes con COVID-19 en hospitales brasileños. Methodología: La evidencia clínica de pacientes infectados por COVID y la consulta bibliográfica se han utilizado para la construcción de este artículo. También se han consultado búsquedas en línea y literatura gris, cuya base de datos incluye PUBMED Central, BVS / BIREME, Web of Science, Science Direct, Higher Level Personnel Improvement Coordinator (CAPES), Periodic Door (Portal de Periódicos da CAPES, The Cochrane Library y PRÓSPERO). Resultados: la cloroquina, la ivermectina y la nitazoxanida presentan características antivirales para respaldar su uso en la fase 1 de los síntomas de COVID-19. Los glucocorticoides como la metilprednisolona y la dexametasona parecen ser más eficaces en pacientes con síntomas pulmonares como los de las fases 2B y 3. Conclusión: Según los artículos planteados en esta revisión, los agentes antiparasitarios son prometedores para los pacientes con COVID-19 al comienzo de los síntomas. La metilprednisolona y la dexametasona están mejor indicadas para pacientes hospitalizados con compromiso pulmonar.
Citas
Aceto T, Beckhorn G D, Jorgensen J R, & et al. (1966). Iatrogenic ACTH-cortisol insufficiency. Pediatr Clin North Am. 1966;13:543–557.doi: https://doi.org/10.1016/S0031-3955(16)31850-8
Aslangul E, & Le Jeunne C. (2012). [Eye and corticosteroid’s use]. Presse Med. 2012;41:414–421.; doi: 10.1016/j.lpm.2012.02.001 ; PMID: 22377461
Baishanbo A, Gargala G, Duclos C, Françoes A, Rassignol J F, Ballet J J, & Favennec L (2006). Efficacy of nitazoxanide and paromomycin in biliary tract cryptosporidiosis in an immunosuppressed gerbil model. J. Antimicrobe Chemother 57(2); 353-355.doi: https://doi.org/10.1002/acr.20295
Belardo, G., La Frazia, S., Cenciarelli, O., Carta, S., Rossignol, J. F., Santoro, M.G., 2011. Boussinesq M, Gardon J, Gardon-Wendel N, & Chippaux J P, (2003). Clinical picture, epidemiology, and outcome of Loa-associated serious adverse events related to mass ivermectin treatment of onchocerciasis in Cameroon. Brown ES, Chandler PA. Mood and cognitive changes during systemic corticosteroid therapy. Prim Care Companion J Clin Psychiatry. 2001;3:17–21. Filaria Journal 2003, 2(Suppl 1):S4 This article is available from: http://filariajournal.com/content/2/S1/S4
Brown E S, & Chandler P A. (2001). Mood and cognitive changes during systemic corticosteroid therapy. Prim Care Companion J Clin Psychiatry. 2001;3:17–21.doi: 10.4088/pcc.v03n0104;PMCID: PMC181154;PMID: 15014624
Burg, R. W. & et al. (1979).Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Ch. 15, 361–367 (1979).doi: https://doi.org/10.1128/AAC.15.3.361
Calya L, Drucea D. J, Cattona M, Jansb D, & Wagstaffb K M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivirus Research 178 (2020) 104787.doi: https://doi.org/10.1016/j.antiviral.2020.104787
Cao, J.; Forrest, J C& Zhang X. A (2015). screen of the NIH collection small molecule library identifies potential coronavirus Antiviral Res, 114 (2015), pp. 1-10doi:https://doi.org/10.1016/j.antiviral.2014.11.010
Carvalho, G. G. P. de; Pires, A. J. V. ; Garcia, R. ; Veloso, C. M. ; Silva, R. R. ;Mendes, F. B. L. ; Pinheiro, A. A. ; & Souza, D. R. de, (2009). In situ degradability of dry matter, crude protein and fibrous fraction of concentrate and agroindustrial by-products. Ciência Anim. Bras., 10 (3): 689-697 Journal article : Ciência Animal Brasileira 2009 Vol.10 No.3 pp.689-697 ref.23 ISSN : 1518-2797
Cavier, R., & Rossignol, J.F., (1982). Etude de diverses associations d’anthelminthiques chez la souris. Rev. Méd. Vét. 133, 779–783. Cosman F, de Beur SJ, LeBoff MS, & et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25:2359–2381.;doi: 10.1007/s00198-014-2794-2
Chaccour C J, Kobylinski K C, Bassat Q, & et al. (2013). Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J 2013; 12: 153.;doi:10.1186/1475-2875-12-153
Chaccour et al.: (2013) Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malaria Journal 2013 12:153 Czock D, Keller F, Rasche FM, & H€aussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44:61-98;doi:https://doi.org/10.2165/00003088-200544010-00003
Dubois E L. (1978). Antimalarials in the management of discoid and systemic lupus arythematosus. Semin Arthritis Rheum. 1978;8:33-51.;doi: : https://doi.org/10.1016/0049-0172(78)90033-1
Ericson-Neilsen W, & Kaye A D. (2014). Steroids: pharmacology, complications, and practice delivery issues. Ochsner J. 2014;14:203–207. Fern,
Euzeby, J.; Prom, T S.& Rossignol. J. F. (1980). Experimentation des propriétés anthelminthiques de la nitazoxanide chez le chien, le chat et les ovins.Rev. Méd. Vét., 131, 687-696.View Record in Scopus Google Scholar
Finegold, S.M., Molitoris, D., Vaisanen, & M.L., (2009). Study of the in vitro activities of rifaximin and comparator agents against 536 anaerobic intestinal bacteria from the perspective of potential utility in pathology involving bowel flora. Antimicrob. Agents Chemother. 53, 281–286.;doi: https://doi.org/10.1128/AAC.00441-08
Freeman, J., Baines, S.D., Todhunter, S.L., Huscroft, G.S., & Wilcox, M.H., (2011). Nitazoxanide is active against Clostridium difficile strains with reduced susceptibility to metronidazole. J. Antimicrob. Chemother. 66, 1407–1408;doi:https://doi.org/10.1093/jac/dkr077
Frieman, M., & et al., 2007. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J. Virol. 81 (18), 9812–9824.;doi:https://doi.org/10.1128/JVI.01012-07
Gardon J, Gardon-Wendel N, Demanga-Ngangue, Kamguo J, Chippaux J P, & Boussinesq M, (1997). Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa Loa infections. Lancet 350: 18–22. [PubMed] [Google Scholar]
Gisselmann G., Pusch H., Hovemann B. T., & Hatt H. (2002) Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nat. Neurosci. 5, 11–12 [PubMed] [Google Scholar].doi:https://doi.org/10.1038/nn787
Gotz, V., & et al., (2016). Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci. Rep. 6, 23138.;doi:https://doi.org/10.1038/srep23138
Gubareva, L.V., Marjuki, H., Mishin, V. P., Sleeman, K., Tamura, D., & Chesnokov, A., La Cruz, J., Villaneuva, J., Davis, T., (2014). Susceptibility of avian influenza A(H7N9) viruses to FDA approved and investigational antiviral drugs. Programme & Abstract Book, Influenza and Other Respiratory Virus Infections: Advances in Clinical Management. Third ISIRV-Antiviral Group Conference. Abstract P57, 83.
Haffizulla J., Hartman A., & Hoppers M. (2014). Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis. 2014;14(7):609–618. 10.1016/s1473-3099(14)70717-0. [published Online First: 2014/05/24]
Hecht D W, Galang M A, Sambol S P, Osmolski J R, Johnson S, & Gerding D N. (2007). In vitro activities of 15 antimicrobial agents against 110 toxigenic Clostridium difficile clinical isolates collected from 1983 to 2004, Antimicrob Agents Chemother, 2007, vol. 51 (pg. 2716-9).doi:https://doi.org/10.1128/AAC.01623-06
Hench P S, Kendall E C, Slocumb C H, & et al. (1950). Effects of cortisone acetate and pituitary ACTH on rheumatoid arthritis, rheumatic fever, and certain other conditions. Arch Intern Med (Chic).1950;85:545–666.doi:10.1001/archinte.1950.00230100002001
Hench P S, Kendall E C, Slocumb C H, & et al. (1949). The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Mayo Clin Proc. 1949;24:181–197. 2.
Hiscox, J.A., & et al., (2001). The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J. Virol. 75 (1), 506–512.doi:https://doi.org/10.1128/JVI.75.1.506-512.2001
Huscher D, Thiele K, Gromnica-Ihle E, & et al. (2009). Dose-related patterns of glucocorticoid- induced side effects. Ann Rheum Dis. 2009;68:1119–1124.doi:http://dx.doi.org/10.1136/ard.2008.092163
James E R. (2007). The etiology of steroid cataract. J Ocul Pharmacol Ther. 2007;23:403–420.doi:https://doi.org/10.1089/jop.2006.0067
Jefferies, & William McK (2004). Safe uses of cortisol. Springfield, Ill: Charles C. Thomas. ISBN 978-0-398-07500-2. Ketkar, H., & et al., 2019. Lack of efficacy of ivermectin for prevention of a lethal Zika virus infection in a murine system. Diagn. Microbiol. Infect. Dis. 95 (1), 38–40.
Kamiyama N, Soma R, Hidano S, Watanabe K, Umekita H, Fukuda C, Noguchi K, et al. (2019). Ribavirin inhibits Zika virus (ZIKV) replication in vitro and suppresses viremia in ... Ketkar H, Yang L, Wormser GP, Wang P. Lack of efficacy of ivermectin for prevention of a lethal Zika virus infection in a murine system. Diagn Microbiol Infect Dis. 2019;95(1):38–40 . doi:https://doi.org/10.1016/j.compbiolchem. 2017.10.011.
Ken (2010–2020). & quot;Cinchona officinalis – L." Plans for a Future. Archived from the original on 25 August 2017. Retrieved 2 February 2020. Fel A,
Krafts K, Hempelmann E, & Skórska-Stania A (July 2012). "From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy". Parasitology Research. 111 (1): 1–6.
Li, J; Bao, Z; Zhuang, D; Liu, S: Liu, Y & ZhangInactivation, W. (2003). efficacy on new coronavirus of a compound disinfecting nanoemulsion Chin. J. Disinfection, 20 (2003), pp. 116-117 [in Chinese].
Mosholder, A D; Mathew, J.; Alexander, J J; Smith, H & Nambiar, S. (2013). “Cardiovascular risks with azithromycin and other antibacterial drugs,” The New England Journal of Medicine, 368(18), 1665–1668, 2013.
Mandeep R, Mehra, Sapan S Desai, Frank Ruschitzka, & Amit N Patel. (2020). Hydroxychloroquineor chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. May 22, 2020.doi:https://doi.org/10.1016/S0140-6736(20)31180-6.
McGavock J M, Lingvay I, Zib I, & et al. (2007)Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007;116:1170–1175.
Meshnick S R, Dobson M J. ... Rainsford K D, Parke A L, Clifford-Rashotte M, Kean W F. (2015). Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, ... Inflammopharmacology (2015)23(5):231–69. doi:10.1007/s10787-015-0239-y
O’Hare. A. Munro Neville, & Michael J. (1982). The Human Adrenal Cortex Pathology and Biology – An Integrated Approach. Springer London. pp. Chapter 4: Structure of the adult cortex. ISBN 978144711317
Pankuch, G. A. & Appelbaum. P. C. (2006). Postantibiotic effect of ceftobiprole against 12 gram-positive organisms. Antimicrob. Agents Chemother. 50:3956-3958. [PMC free article] [PubMed].doi: 10.1128/AAC.00724-06
Peters, W. (1971). Chemotherapy and drug resistance in malaria. Ipswich, Academic Press, 1970. 876 p. Powell SJ: Therapy of amebiasis. Bull NY Acad Med 47:469-477, 1971
Rainsford K D, Parke A L, Clifford-Rashotte M, & Kean W F. (2010).Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 2015;23(5):231-69. mononuclear cells from patients with systemic lupus erythematosus. ... Rheumatology (Oxford) (2010) 49(12):2281–9. doi:10.1093/rheumatology/keq226
Rockwell D A. (1968). Psychiatric complications with chloroquine and quinacrine. Am J Psychiatry.1968;124(9):1257-60.
Rossignol J-F. (2016). Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health. 2016;9(3):227–230. doi: 10.1016/j.jiph.2016.04.001.
Rossignol J F, La Frazia S, Chiappa L, Ciucci A, & Santoro M G. (2009). Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. J Biol Chem 2009;284:29798–808.
Rossignol J F, La Frazia S, Chiappa L, Ciucci A, Santoro M G. (2009).Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post- translational level. J Biol Chem. (2009) 284:29798–808. doi: 10.1074/jbc.M109.029470.
Rossignol. J. F. and & H. Malsonneuve (1984). “Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections.” Am J Trop Med Hyg 33 (Copyright (C) 2015 U.S. National Library of Medicine): 511-512.
Rowland, R. R., & et al., (2005). Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells. J. Virol. 79 (17), 11507–11512.doi:https://doi.org/10.1128/JVI.79.17.11507-11512.2005
Santulli G. M D (2015). Adrenal Glands: From Pathophysiology to Clinical Evidence. Nova Science Publishers, New York, NY. ISBN 978-1-63483-570-1.
Savarino A, Boelaert J R, Cassone A, Majori G, & Cauda R (2003). "Effects of chloroquine on viral infections: an old drug against today's diseases?". The Lancet. Infectious Diseases. 3 (11): 722–7.doi:https://doi.org/10.1016/S1473-3099(03)00806-5
Schakman O, Gilson H, & Thissen J P. (2008). Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 2008;197:1–10.doi: 10.1677/joe-07-0606
Silva J A, Jacobs J W, Kirwan J R, & et al. (2006). Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data. Ann Rheum Dis. 2006;65:285–293.;doi:http://dx.doi.org/10.1136/ard.2005.038638
Sleeman, K., Tamura, D., Chesnokov, A., La Cruz, J., Villaneuva, J.,& Davis, T., (2014). Susceptibility of avian influenza A(H7N9) viruses to FDA approved and investigational antiviral drugs. Programme & Abstract Book, Influenza and Other Respiratory Virus Infections: Advances in Clinical Management. Third ISIRV-Antiviral Group Conference. Abstract P57, 83.
Simmons G, Reeves J D, Rennekamp A J, Amberg, S M, & Piefer A J. Bates P. (2004). Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci. usa 2004. 101 4240-4245.doi:https://doi.org/10.1073/pnas.0306446101
Souverein P C, Berard A, Van Staa T P, & et al. (2004). Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case–control study. Heart.2004;90:859–865.doi:http://dx.doi.org/10.1136/hrt.2003.020180
Smith T, Bushek J, & Prosser T. (2020). COVID-19 Drug therapy – Potential Options. Elsevier, March 26, 2020. Tanaka H, Hirano F, Nomura Y, & et al. Relative glucocorticoid potency revisited. Rheumatol;Int. 1994;14:9-12.doi:https://doi.org/10.1007/BF00302665
Tay, M. Y., & et al., (2013). Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antivir. Res. 99 (3),301–306.doi:https://doi.org/10.1016/j.antiviral.2013.06.002
Thomsen E K, Sanuku N, Baea M, & et al. (2016). Efficacy, safety, and pharmacokinetics of coadministered diethylcarbamazine, albendazole, and ivermectin for treatment of bancroftian filariasis.Clin Infect Dis 2016; 62: 334–41.doi:https://doi.org/10.1093/cid/civ882
Timani, K.A., & et al., (2005). Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 114 (1–2), 23–34.doi:https://doi.org/10.1016/j.virusres.2005.05.007
Van der Goes M, Jacobs J W, & Bijlsma J W. (2014). The value of glucocorticoid co-therapy in different rheumatic diseases-positive and adverse effects. Arthritis Res Ther. 2014;16 Suppl 2:S2.doi:: https://doi.org/10.1186/ar4686
Van der Hooft C S, Heeringa J, Brusselle G G, & et al. (2006). Corticosteroids and the risk of atrial fibrillation. Arch Intern Med. 2006;166:1016–1020.doi:10.1001/archinte.166.9.1016
Wagstaff, K. M., & et al., (2011). An AlphaScreen(R)-based assay for high-throughput screening for specific inhibitors of nuclear import. J. Biomol. Screen 16 (2), 192–200.doi:https://doi.org/10.1177/1087057110390360
Wallace D J (1994). Antimalarial agents and lupus. Rheum Dis Clin North Am. 1994;20(1): 243-63. Review.doi:https://doi.org/10.1016/S0889-857X(21)00233-7
Weinstein R S. (2012). Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin North Am. 2012;41:595–611.
Whitehead, Saffron A.; Nussey, S. (2001). Endocrinology: an integrated approach.Oxford: BIOS. p. 122. ISBN 978-1-85996-252-7.
Wulan, W. N., & et al., (2015). Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front. Microbiol. 6, 553.doi:https://doi.org/10.3389/fmicb.2015.00553
Wurm, T., & et al., (2001). Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J. Virol. 75 (19), 9345–9356.doi:https://doi.org/10.1128/JVI.75.19.9345-9356.2001
Yang, S. N .Y., & et al., (2020). The broad spectrum antiviral ivermectin targets the host nuclear transport importin alpha/beta1 heterodimer. Antivir. Res. 104760.doi:https://doi.org/10.1016/j.antiviral.2020.104760
Yoshimura, T.; Matsushima, K.; Tanaka. S. & et al. (1987). Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci USA 84:9233-9237. 1987.doi:https://doi.org/10.1073/pnas.84.24.9233
Zheng Y., Hirschberg B., Yuan J., Wang A. P., Hunt D. C., Ludmerer S. W., Schmatz D. M., & Cully D. F. (2002) Identification of two novel Drosophila melanogaster histamine-gated chloride;channel subunits expressed in the eye. J. Biol. Chem. 277, 2000–2005 [PubMed] [Google Scholar]doi:https://doi.org/10.1074/jbc.M107635200)
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Luciano Barreto Silva; Paulo Reis Melo Junior; Guilherme Marinho Sampaio; Gabriel Henrique Queiroz Oliveira; Hadassa Fonsêca da Silva; Sandra Sayão Maia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.