Influencia de la nanosílice funcionalizada con diferentes grupos funcionales en las propiedades de los composites cementosos: Una revisión
DOI:
https://doi.org/10.33448/rsd-v10i8.17349Palabras clave:
Composites cementosos; Grupos funcionales; Material nanocementoso suplementario; Nanosílice funcionalizada.Resumen
El uso de material nanocementoso suplementario (SNCM) para mejorar las propiedades mecánicas y la durabilidad de los compuestos cementosos (pasta de cemento, mortero y hormigón) ha recibido una atención notable en estudios recientes. El uso de nanosílice como SNCM es una práctica común en la comunidad científica. Sin embargo, los desarrollos recientes en la síntesis de nanopartículas mono-dispersas y de distribución de tamaño estrecho mediante métodos de funcionalización proporcionan una mejora significativa para el desarrollo de nanocompuestos del grupo de sílice (entre los grupos funcionales: amina, carboxilos y grupos de glicol), las llamadas nanosílice funcionalizada (FNS). Este artículo tiene como objetivo realizar una revisión de la literatura sobre las propiedades de FNS en materiales cementosos y las técnicas avanzadas de análisis nano/microestructural utilizadas para caracterizar compuestos cementosos que contienen FNS.
Citas
Azevedo, N. H. de, & Gleize, P. J. P. (2018). Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a Portland cement paste. Construction and Building Materials, 169, 388–395. https://doi.org/10.1016/j.conbuildmat.2018.02.185
Cai, Y., Hou, P., Cheng, X., Du, P., & Ye, Z. (2017). The effects of nanoSiO 2 on the properties of fresh and hardened cement-based materials through its dispersion with silica fume. Construction and Building Materials, 148, 770–780. https://doi.org/10.1016/j.conbuildmat.2017.05.091
Chithra, S., Senthil Kumar, S. R. R., & Chinnaraju, K. (2016). The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate. Construction and Building Materials, 113, 794–804. https://doi.org/10.1016/j.conbuildmat.2016.03.119
Collodetti, G., Gleize, P. J. P., & Monteiro, P. J. M. (2014). Exploring the potential of siloxane surface modified nano-SiO2 to improve the Portland cement pastes hydration properties. Construction and Building Materials, 54, 99–105. https://doi.org/10.1016/j.conbuildmat.2013.12.028
Feng, P., Chang, H., Liu, X., Ye, S., Shu, X., & Ran, Q. (2020). The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Materials and Design, 186, 108320. https://doi.org/10.1016/j.matdes.2019.108320
Fraga, Y. S. B., Rêgo, J. H. da S., Capuzzo, V. M. S., Andrade, D. da S., & Morais, P. C. (2020). Ultrasonication and synergistic effects of silica fume and colloidal nanosilica on the C–S–H microstructure. Journal of Building Engineering, 32(March), 101702. https://doi.org/10.1016/j.jobe.2020.101702
Gu, Y., Ran, Q., She, W., & Liu, J. (2017). Modifying Cement Hydration with NS@PCE Core-Shell Nanoparticles. Advances in Materials Science and Engineering, 2017(1), 1–13. https://doi.org/10.1155/2017/3823621
Gu, Y., Ran, Q., She, W., Shu, X., & Liu, J. (2018). Effects and mechanisms of surface-treatment of cementitious materials with nanoSiO2@PCE core-shell nanoparticles. Construction and Building Materials, 166, 12–22. https://doi.org/10.1016/j.conbuildmat.2018.01.082
Gu, Y., Ran, Q., Shu, X., Yu, C., Chang, H., & Liu, J. (2016). Synthesis of nanoSiO2@PCE core-shell nanoparticles and its effect on cement hydration at early age. Construction and Building Materials, 114, 673–680. https://doi.org/10.1016/j.conbuildmat.2016.03.093
Gu, Y., Wei, Z., Ran, Q., Shu, X., Lv, K., & Liu, J. (2017). Characterizing cement paste containing SRA modified nanoSiO2 and evaluating its strength development and shrinkage behavior. Cement and Concrete Composites, 75, 30–37. https://doi.org/10.1016/j.cemconcomp.2016.11.001
Gu, Y., Xia, K., Wei, Z., Jiang, L., She, W., & Lyu, K. (2020). Synthesis of nanoSiO2@graphene-oxide core-shell nanoparticles and its influence on mechanical properties of cementitious materials. Construction and Building Materials, 236, 117619. https://doi.org/10.1016/j.conbuildmat.2019.117619
Guo, L., Wu, J., & Wang, H. (2020). Mechanical and perceptual characterization of ultra-high-performance cement-based composites with silane-treated graphene nano-platelets. Construction and Building Materials, 240, 117926. https://doi.org/10.1016/j.conbuildmat.2019.117926
Huang, C., & Wang, D. (2017). Surface Modification of Nano-SiO2 Particles with Polycarboxylate Ether-Based Superplasticizer under Microwave Irradiation. ChemistrySelect, 2(29), 9349–9354. https://doi.org/10.1002/slct.201701493
Huang, C., Wang, Y., Zhao, J., & Wang, D. (2020). Potential Effect of Surface Modified Nano-SiO2 with PDDA on the Cement Paste Early Hydration. ChemistrySelect, 5(11), 3159–3163. https://doi.org/10.1002/slct.201904791
Khalil, M., Saeed, S., & Ahmad, Z. (2007). Mechanical and Thermal Properties of Polyimide/Silica Hybrids with Imide-Modified Silica Network Structures. Wiley InterScience. https://doi.org/10.1002/app
Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557–562. https://doi.org/10.1016/j.conbuildmat.2013.02.066
Kontoleontos, F., Tsakiridis, P. E., Marinos, A., Kaloidas, V., & Katsioti, M. (2012). Influence of colloidal nanosilica on ultrafine cement hydration: Physicochemical and microstructural characterization. Construction and Building Materials, 35, 347–360. https://doi.org/10.1016/j.conbuildmat.2012.04.022
Liu, X., Feng, P., Shu, X., & Ran, Q. (2020). Effects of highly dispersed nano-SiO2 on the microstructure development of cement pastes. Materials and Structures/Materiaux et Constructions, 53(1), 1–12. https://doi.org/10.1617/s11527-019-1431-0
Mariano, A. M., & Rocha Santos, M. (2017). Revisão da Literatura: Apresentação de uma Abordagem Integradora Structural Equations View project Service Quality View project. XXVI Congreso Internacional de La Academia Europea de Dirección y Economía de La Empresa (AEDEM), September, v.26. https://www.researchgate.net/publication/319547360
Martins, G. L. O., Fraga, Y. S. B., Vasconcellos, J. S., & da S. Rêgo, J. H. (2020). Synthesis and characterization of functionalized nanosilica for cementitious composites: review. Journal of Nanoparticle Research, 22(11). https://doi.org/10.1007/s11051-020-05063-7
Monasterio, M., Gaitero, J. J., Erkizia, E., Guerrero Bustos, A. M., Miccio, L. A., Dolado, J. S., & Cerveny, S. (2015). Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C-S-H) gel. Journal of Colloid and Interface Science, 450, 109–118. https://doi.org/10.1016/j.jcis.2015.02.066
Nair, D. G., Fraaij, A., Klaassen, A. A. K., & Kentgens, A. P. M. (2008). A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research, 38(6), 861–869. https://doi.org/10.1016/j.cemconres.2007.10.004
Perez, G., Gaitero, J. J., Erkizia, E., Jimenez, I., & Guerrero, A. (2015). Characterisation of cement pastes with innovative self-healing system based in epoxy-amine adhesive. Cement and Concrete Composites, 60, 55–64. https://doi.org/10.1016/j.cemconcomp.2015.03.010
Reches, Y. (2018). Nanoparticles as concrete additives: Review and perspectives. Construction and Building Materials, 175, 483–495. https://doi.org/10.1016/j.conbuildmat.2018.04.214
Ren, C., Hou, L., Li, J., Lu, Z., & Niu, Y. (2020). Preparation and properties of nanosilica-doped polycarboxylate superplasticizer. Construction and Building Materials, 252, 119037. https://doi.org/10.1016/j.conbuildmat.2020.119037
Rong, Z., Zhao, M., & Wang, Y. (2020). Effects of modified nano-SiO2 particles on properties of high-performance cement-based composites. Materials, 13(3), 1–12. https://doi.org/10.3390/ma13030646
Senff, L., Hotza, D., Repette, W. L., Ferreira, V. M., & Labrincha, J. A. (2010). Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Construction and Building Materials, 24(8), 1432–1437. https://doi.org/10.1016/j.conbuildmat.2010.01.012
Singh, L. P., Bhattacharyya, S. K., Shah, S. P., Mishra, G., & Sharma, U. (2016). Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: Part II. Construction and Building Materials, 102, 943–949. https://doi.org/10.1016/j.conbuildmat.2015.05.084
Sun, J., Shi, H., Qian, B., Xu, Z., Li, W., & Shen, X. (2017). Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration. Construction and Building Materials, 140, 282–292. https://doi.org/10.1016/j.conbuildmat.2017.02.075
Varghese, L., Kanta Rao, V. V. L., & Parameswaran, L. (2019). Nanosilica-added concrete: Strength and its correlation with time-dependent properties. Proceedings of Institution of Civil Engineers: Construction Materials, 172(2), 85–94. https://doi.org/10.1680/jcoma.17.00031
Vasconcellos, J. S., Martins, G. L. O., de Almeida Ribeiro Oliveira, G., Lião, L. M., da Silva Rêgo, J. H., & Sartoratto, P. P. C. (2020). Effect of amine functionalized nanosilica on the cement hydration and on the physical-mechanical properties of Portland cement pastes. Journal of Nanoparticle Research, 22(8). https://doi.org/10.1007/s11051-020-04940-5
Wang, J., White, W. B., & Adair, J. H. (2006). Evaluation of dispersion methods for silica-based composite nanoparticles. Journal of the American Ceramic Society, 89(7), 2359–2363. https://doi.org/10.1111/j.1551-2916.2006.01064.x
Xu, G., Zhang, J., & Song, G. (2003). Effect of complexation on the zeta potential of silica powder. Powder Technology, 134(3), 218–222. https://doi.org/10.1016/S0032-5910(03)00172-4
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Yuri Sotero Bomfim Fraga; Gabriel Lima Oliveira Martins; João Henrique da Silva Rêgo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.