Influência da nanossílica funcionalizada com diferentes grupos funcionais nas propriedades de compósitos cimentícios: Uma revisão
DOI:
https://doi.org/10.33448/rsd-v10i8.17349Palavras-chave:
Compósitos cimentícios; Grupos funcionais; Nanomaterial cimentício suplementar; Nanossílica funcionalizada.Resumo
O uso de nanomaterial cimentício suplementar (NMCS) para melhorar as propriedades mecânicas e de durabilidade de compósitos cimentícios (pasta de cimento, argamassa e concreto) tem recebido atenção notável em estudos recentes. O uso da nanossílica como NMCS é uma prática consolidada na comunidade científica. No entanto, desenvolvimentos recentes na síntese de distribuição monodispersa e de tamanho estreito de nanopartículas por métodos de funcionalização fornecem uma melhoria significativa para o desenvolvimento de nano compósitos do grupo de sílica (entre os grupos funcionais: amina, carboxilas e grupos glicol), as chamadas nanossílicas funcionalizadas (NSF). Este artigo tem como objetivo levantar uma revisão da literatura sobre as propriedades de NSF em materiais cimentícios e as técnicas avançadas de análise nano/microestrutural utilizadas para caracterizar compósitos cimentícios contendo NSF.
Referências
Azevedo, N. H. de, & Gleize, P. J. P. (2018). Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a Portland cement paste. Construction and Building Materials, 169, 388–395. https://doi.org/10.1016/j.conbuildmat.2018.02.185
Cai, Y., Hou, P., Cheng, X., Du, P., & Ye, Z. (2017). The effects of nanoSiO 2 on the properties of fresh and hardened cement-based materials through its dispersion with silica fume. Construction and Building Materials, 148, 770–780. https://doi.org/10.1016/j.conbuildmat.2017.05.091
Chithra, S., Senthil Kumar, S. R. R., & Chinnaraju, K. (2016). The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate. Construction and Building Materials, 113, 794–804. https://doi.org/10.1016/j.conbuildmat.2016.03.119
Collodetti, G., Gleize, P. J. P., & Monteiro, P. J. M. (2014). Exploring the potential of siloxane surface modified nano-SiO2 to improve the Portland cement pastes hydration properties. Construction and Building Materials, 54, 99–105. https://doi.org/10.1016/j.conbuildmat.2013.12.028
Feng, P., Chang, H., Liu, X., Ye, S., Shu, X., & Ran, Q. (2020). The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Materials and Design, 186, 108320. https://doi.org/10.1016/j.matdes.2019.108320
Fraga, Y. S. B., Rêgo, J. H. da S., Capuzzo, V. M. S., Andrade, D. da S., & Morais, P. C. (2020). Ultrasonication and synergistic effects of silica fume and colloidal nanosilica on the C–S–H microstructure. Journal of Building Engineering, 32(March), 101702. https://doi.org/10.1016/j.jobe.2020.101702
Gu, Y., Ran, Q., She, W., & Liu, J. (2017). Modifying Cement Hydration with NS@PCE Core-Shell Nanoparticles. Advances in Materials Science and Engineering, 2017(1), 1–13. https://doi.org/10.1155/2017/3823621
Gu, Y., Ran, Q., She, W., Shu, X., & Liu, J. (2018). Effects and mechanisms of surface-treatment of cementitious materials with nanoSiO2@PCE core-shell nanoparticles. Construction and Building Materials, 166, 12–22. https://doi.org/10.1016/j.conbuildmat.2018.01.082
Gu, Y., Ran, Q., Shu, X., Yu, C., Chang, H., & Liu, J. (2016). Synthesis of nanoSiO2@PCE core-shell nanoparticles and its effect on cement hydration at early age. Construction and Building Materials, 114, 673–680. https://doi.org/10.1016/j.conbuildmat.2016.03.093
Gu, Y., Wei, Z., Ran, Q., Shu, X., Lv, K., & Liu, J. (2017). Characterizing cement paste containing SRA modified nanoSiO2 and evaluating its strength development and shrinkage behavior. Cement and Concrete Composites, 75, 30–37. https://doi.org/10.1016/j.cemconcomp.2016.11.001
Gu, Y., Xia, K., Wei, Z., Jiang, L., She, W., & Lyu, K. (2020). Synthesis of nanoSiO2@graphene-oxide core-shell nanoparticles and its influence on mechanical properties of cementitious materials. Construction and Building Materials, 236, 117619. https://doi.org/10.1016/j.conbuildmat.2019.117619
Guo, L., Wu, J., & Wang, H. (2020). Mechanical and perceptual characterization of ultra-high-performance cement-based composites with silane-treated graphene nano-platelets. Construction and Building Materials, 240, 117926. https://doi.org/10.1016/j.conbuildmat.2019.117926
Huang, C., & Wang, D. (2017). Surface Modification of Nano-SiO2 Particles with Polycarboxylate Ether-Based Superplasticizer under Microwave Irradiation. ChemistrySelect, 2(29), 9349–9354. https://doi.org/10.1002/slct.201701493
Huang, C., Wang, Y., Zhao, J., & Wang, D. (2020). Potential Effect of Surface Modified Nano-SiO2 with PDDA on the Cement Paste Early Hydration. ChemistrySelect, 5(11), 3159–3163. https://doi.org/10.1002/slct.201904791
Khalil, M., Saeed, S., & Ahmad, Z. (2007). Mechanical and Thermal Properties of Polyimide/Silica Hybrids with Imide-Modified Silica Network Structures. Wiley InterScience. https://doi.org/10.1002/app
Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557–562. https://doi.org/10.1016/j.conbuildmat.2013.02.066
Kontoleontos, F., Tsakiridis, P. E., Marinos, A., Kaloidas, V., & Katsioti, M. (2012). Influence of colloidal nanosilica on ultrafine cement hydration: Physicochemical and microstructural characterization. Construction and Building Materials, 35, 347–360. https://doi.org/10.1016/j.conbuildmat.2012.04.022
Liu, X., Feng, P., Shu, X., & Ran, Q. (2020). Effects of highly dispersed nano-SiO2 on the microstructure development of cement pastes. Materials and Structures/Materiaux et Constructions, 53(1), 1–12. https://doi.org/10.1617/s11527-019-1431-0
Mariano, A. M., & Rocha Santos, M. (2017). Revisão da Literatura: Apresentação de uma Abordagem Integradora Structural Equations View project Service Quality View project. XXVI Congreso Internacional de La Academia Europea de Dirección y Economía de La Empresa (AEDEM), September, v.26. https://www.researchgate.net/publication/319547360
Martins, G. L. O., Fraga, Y. S. B., Vasconcellos, J. S., & da S. Rêgo, J. H. (2020). Synthesis and characterization of functionalized nanosilica for cementitious composites: review. Journal of Nanoparticle Research, 22(11). https://doi.org/10.1007/s11051-020-05063-7
Monasterio, M., Gaitero, J. J., Erkizia, E., Guerrero Bustos, A. M., Miccio, L. A., Dolado, J. S., & Cerveny, S. (2015). Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C-S-H) gel. Journal of Colloid and Interface Science, 450, 109–118. https://doi.org/10.1016/j.jcis.2015.02.066
Nair, D. G., Fraaij, A., Klaassen, A. A. K., & Kentgens, A. P. M. (2008). A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research, 38(6), 861–869. https://doi.org/10.1016/j.cemconres.2007.10.004
Perez, G., Gaitero, J. J., Erkizia, E., Jimenez, I., & Guerrero, A. (2015). Characterisation of cement pastes with innovative self-healing system based in epoxy-amine adhesive. Cement and Concrete Composites, 60, 55–64. https://doi.org/10.1016/j.cemconcomp.2015.03.010
Reches, Y. (2018). Nanoparticles as concrete additives: Review and perspectives. Construction and Building Materials, 175, 483–495. https://doi.org/10.1016/j.conbuildmat.2018.04.214
Ren, C., Hou, L., Li, J., Lu, Z., & Niu, Y. (2020). Preparation and properties of nanosilica-doped polycarboxylate superplasticizer. Construction and Building Materials, 252, 119037. https://doi.org/10.1016/j.conbuildmat.2020.119037
Rong, Z., Zhao, M., & Wang, Y. (2020). Effects of modified nano-SiO2 particles on properties of high-performance cement-based composites. Materials, 13(3), 1–12. https://doi.org/10.3390/ma13030646
Senff, L., Hotza, D., Repette, W. L., Ferreira, V. M., & Labrincha, J. A. (2010). Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Construction and Building Materials, 24(8), 1432–1437. https://doi.org/10.1016/j.conbuildmat.2010.01.012
Singh, L. P., Bhattacharyya, S. K., Shah, S. P., Mishra, G., & Sharma, U. (2016). Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: Part II. Construction and Building Materials, 102, 943–949. https://doi.org/10.1016/j.conbuildmat.2015.05.084
Sun, J., Shi, H., Qian, B., Xu, Z., Li, W., & Shen, X. (2017). Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration. Construction and Building Materials, 140, 282–292. https://doi.org/10.1016/j.conbuildmat.2017.02.075
Varghese, L., Kanta Rao, V. V. L., & Parameswaran, L. (2019). Nanosilica-added concrete: Strength and its correlation with time-dependent properties. Proceedings of Institution of Civil Engineers: Construction Materials, 172(2), 85–94. https://doi.org/10.1680/jcoma.17.00031
Vasconcellos, J. S., Martins, G. L. O., de Almeida Ribeiro Oliveira, G., Lião, L. M., da Silva Rêgo, J. H., & Sartoratto, P. P. C. (2020). Effect of amine functionalized nanosilica on the cement hydration and on the physical-mechanical properties of Portland cement pastes. Journal of Nanoparticle Research, 22(8). https://doi.org/10.1007/s11051-020-04940-5
Wang, J., White, W. B., & Adair, J. H. (2006). Evaluation of dispersion methods for silica-based composite nanoparticles. Journal of the American Ceramic Society, 89(7), 2359–2363. https://doi.org/10.1111/j.1551-2916.2006.01064.x
Xu, G., Zhang, J., & Song, G. (2003). Effect of complexation on the zeta potential of silica powder. Powder Technology, 134(3), 218–222. https://doi.org/10.1016/S0032-5910(03)00172-4
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Yuri Sotero Bomfim Fraga; Gabriel Lima Oliveira Martins; João Henrique da Silva Rêgo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.