Bioprospección y caracterización de bacterias productoras de celulasa del suelo del Cerrado brasileño

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i8.17426

Palabras clave:

Screening; Enzima; Bacillus; Biotecnología.

Resumen

Este trabajo describe la bioprospección y caracterización de bacterias productoras de celulasa aisladas de suelo obtenido en una región preservada del bioma Cerrado, en Uberaba, Brasil. Se confirmó la actividad celulolítica en 14 de las 84 cepas bacterianas aisladas. De acuerdo con la cuantificación enzimática, se seleccionaron cinco aislamientos como los mejores productores de celulasa y en base a la secuenciación parcial del gen rRNA 16S se identificaron como Bacillus siamensis (aislado AB-9; 5,000U/mL), Bacillus toyonensis (aislado AB-1; 4.630U/mL), Bacillus methylotrophicus (aislados MB-3; 4.236U/mL y MP-7; 4.282U/mL) y Bacillus drentensis (aislado ME-2; 4.444U/mL). El extracto enzimático obtenido de B. siamensis AB-9 fue el más estable a diferentes valores de pH (2-8), manteniendo su actividad celulolítica, mientras que B. toyonensis AB-1 y B. methylotrophicus MP-7 produjeron celulasas con máximos actividad a pH 7 y 8. Las celulasas producidas por B. siamensis AB-9 y B. toyonensis AB-1 mostraron alta actividad enzimática a todas las temperaturas analizadas (10-80°C), mientras que las celulasas de B. methylotrophicus MB-3 mostró una actividad máxima en el rango de 20-70°C. Hasta el momento, esta es la primera vez que se describen bacterias productoras de celulasa aisladas del bioma del Cerrado brasileño en la región del Triângulo Mineiro con potenciales aplicaciones biotecnológicas.

Citas

Apun, K., Jong, B. C., & Salleh, M .A. (2000). Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. Journal of General and Applied Microbiology, 46 (5), 263-267.

Asha, B. M., Revathi, M., Yadav, A., & Sakthivel, N. (2012). Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain. Paenibacillus barcinonensis. Journal of Microbiology and Biotechnology, 22 (11), 1501-1509.

Awasthi, M. K., Wong, J. W. C., Kumar, S., Awasthi, S.K., Wang, Q., Wang, M., Ren, X., Zhao, J., Chen, H., & Zhang, Z. (2018). Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature. Bioresource Technology, 248, 160-170.

Azadian, F., Badoei-dalfard, A., Namaki-Shoushtari, A., Karami, Z., & Hassanshahian, M. (2017). Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. Journal of Genetic Engineering and Biotechnology, 15 (1), 187-196.

Behera, B. C., Sethi, B. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2017). Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15 (1), 197-210.

Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18 (5), 355-383.

Cheng, J., Huang, S., Jiang, H., Zhang, Y., Li, L., Wang, J., & Fan, C. (2016). Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen. World Journal of Microbiology and Biotechnology, 32 (1), 12.

Dehghanikhah, F., Shakarami, J., & Asoodeh, A. (2020). Purification and biochemical characterization of alkalophilic cellulase from the symbiotic Bacillus subtilis BC1 of the leopard moth, zeuzera pyrina (L.) (Lepidoptera: Cossidae). Current Microbiology, 77 (7), 1254-1261.

Dienes, D., Egyházi, A., & Réczey, K. (2004). Treatment of recycled fiber with Trichoderma cellulases. Industrial Crops Products, 20 (1), 11-21.

Elhameed, E. A., Sayed, A.R.M., Radwan, T. E. E., & Hassan, G. (2020). Biochemical and molecular characterization of five Bacillus isolates displaying remarkable carboxymethyl cellulase activities. Current Microbiology, 77 (10), 3076-3084.

Endo, K., Hakamada, Y., Takizawa, S., Kubota, H., Sumitomo, N., Kobayashi, T., & Ito, S. (2001). A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic properties, and nucleotide and deduced amino acid sequences. Applied Microbiology and Biotechnology, 57 (1-2), 109-16.

Goyal, V., Mittal, A., Bhuwal, A. K., Singh, G., Yadav, A., & Aggarwal, N. K. (2014). Parametric optimization of cultural conditions for carboxymethyl cellulase production using pretreated rice straw by Bacillus sp. 313SI under stationary and shaking conditions. Biotechnology Research International, 2014, 651839.

Gupta, M., Sharma, M., & Singh, S. (2015). Enhanced production of cellulase from Bacillus licheniformis K-3 with potential for saccharification of rice straw. Energy Technology, 3, 216–224.

Gupta, R., Khasa, Y. P., & Kuhad, R. C. (2011). Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers, 84 (2011), 1103–1109.

Hankin, R., & Anagnostakis, S. L. (1975). The use of solid media for detection of enzymes production by fungi. Mycology, 67 (3), 596-607.

Huang, S., Deng, G., Yang, Y., Wu, Z., & Wu, L. (2015). Optimization of endoglucanase production from a novel bacterial isolate, Arthrobacter sp. HPG166 and characterization of its properties. Brazilian Archives of Biology Technology, 58 (5), 692-701.

Irfan, M., Tayyab, A., Hasan, F., Khan, S., Badshah, M., & Shah, A. A. (2017). Production and characterization of organic solvent-tolerant cellulase from Bacillus amyloliquefaciens AK9 isolated from hot spring. Applied Biochemistry and Biotechnology, 182 (4), 1390–1402.

Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial Cellulases and their industrial applications. Enzyme Research, 2011, 280696.

Liu, X., Jiang, Z., Liu, Y., You, X., Yang, S., & Yan, Q. (2019). Biochemical characterization of a novel exo-oligoxylanase from Paenibacillus barengoltzii suitable for monosaccharification from corncobs. Biotechnology for Biofuels, 12, 190.

Ma, L., Aizhan, R., Wang, X., Yi, Y., Shan, Y., Liu, B., Zhou, Y., & Lü, X. (2020). Cloning and characterization of low-temperature adapted GH5-CBM3 endo-cellulase from Bacillus subtilis 1AJ3 and their application in the saccharification of switchgrass and coffee grounds. AMB Express, 10 (1), 42.

Meng, F., Ma, L., Ji, S., Yang, W., & Cao, B. (2014). Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Letters Applied Microbiology, 59 (3), 306-312.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31 (3), 426–428.

Mukhtar, S., Mehnaz, S., Mirza, M. S., & Malik, K. A. (2019). Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola stocksii and Atriplex amnicola) for production of hydrolytic enzymes. Brazilian Journal of Microbiology, 50 (1), 85-97.

Niu, Q., Zhang, G., Zhang, L., Ma, Y., Shi, Q., & Fu, W. (2016). Purification and characterization of a thermophilic 1,3-1,4-β-glucanase from Bacillus methylotrophicus S2 isolated from booklice. Journal of Bioscience and Bioengeneering, 121 (5), 503-508.

Paudel, Y. P., & Qin, W. (2015). Characterization of novel cellulase-producing bacteria isolated from rotting wood samples. Applied Biochemical Biotechnology, 177 (5), 1186-98.

Potprommanee, L., Wang, X. Q., Han, Y. J., Nyobe, D., Peng, Y. P., Huang, Q., Liu, J. Y., Liao, Y. L., & Chang, K. L. (2017). Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulose producer on alkali pretreated of lignocellulosic biomass. PLoS ONE, 12 (4), 0175004.

Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied Environmental Microbiology, 43 (4), 777–780.

Tiwari, R., Singh, P. K., Singh, S., Nain, P. K. S., Nain, L., & Shukla, P. (2017). Bioprospecting of novel thermostable β-glucosidase from Bacillus subtilis RA10 and its application in biomass hydrolysis. Biotechnology Biofuels, 10, 246.

Wu, B., Zheng, S., Pedroso, M. M., Guddat, L. W., Chang, S., He, B., & Schenk, G. (2018). Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5 with potential applications in the saccharification of cellulosic substrates. Biotechnology for Biofuels, 11, 20.

Zarafeta, D., Kissas, D., Sayer, C., Gudbergsdottir, S. R., Ladoukakis, E., Isupov, M. N., Chatziioannou, A., Peng, X., Littlechild, J. A., Skretas, G., & Kolisis, F. N. (2016). Discovery and characterization of a thermostable and highly halotolerant GH5 cellulase from an icelandic hot spring isolate. PLoS One, 11 (1), 0146454.

Zvereva, E. A., Fedorova, T. V., Kevbrin, V. V., Zhilina, T. N., & Rabinovich, M. L. (2006). Cellulase activity of a haloalkaliphilic anaerobic bacterium, strain Z-7026. Extremophiles, 10 (1), 53-60

Publicado

13/07/2021

Cómo citar

ALVES, B. A. .; ROTTA, I. S. .; FERREIRA-MACHADO, A. B. .; PAIVA, A. D. Bioprospección y caracterización de bacterias productoras de celulasa del suelo del Cerrado brasileño. Research, Society and Development, [S. l.], v. 10, n. 8, p. e34010817426, 2021. DOI: 10.33448/rsd-v10i8.17426. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17426. Acesso em: 28 sep. 2024.

Número

Sección

Ciencias Agrarias y Biológicas