Análisis de las proteínas salivales de los corredores de la calle después de un evento deportivo real

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.18183

Palabras clave:

Proteómica; Espectrometria de Masas; Ejercicio; Saliva.

Resumen

El objetivo fue caracterizar las cambios inducidos por el ejercicio físico agudo en las proteínas salivales de los corredores callejeros. Se recogieron muestras de saliva de 12 atletas masculinos adultos antes e inmediatamente después de una carrera de calle. Se crearon dos grupos en función de la distancia recorrida, 5 km (n = 4) y 10 km (n = 8). Las muestras fueron sometidas a agotamiento de amilasa, albúmina e inmunoglobulina G. Luego fueron concentradas, digeridas y analizadas con nano-UPLC tándem nano-ESI-MSE. En total se identificaron 69 proteínas. Se observaron cambios significativos en la expresión de 15 proteínas en el grupo de 5 km y 13 proteínas en el grupo de 10 km. Entre las proteínas con expresión alterada, solo 7 ya habían sido descritas en la literatura en modelos similares (Alfa Amilasa 1, Lactoperoxidasa, Alfa Actina del Músculo Esquelético, Cistatina-B, Cistatina-SN, Cistatina-SA y Proteína 3B regulada por andrógenos en glándula submaxilar). Este estudio demostró que correr en la calle promueve cambios agudos en el proteoma salival, los resultados obtenidos se unen a los pocos datos disponibles en la literatura en la búsqueda de una mejor comprensión de los efectos agudos del ejercicio.

Biografía del autor/a

Cícero Matheus Lima Amaral, Universidade Estadual do Ceará

Bachelor of nutrition. State University of Ceará, Health Sciences Center, Nutrition Course. Fortaleza, Ceará, Brazil

Iago Almeida da Ponte, Universidade Estadual do Ceará

Graduating in Nutrition. State University of Ceará, Health Sciences Center, Nutrition Course. Fortaleza, Ceará, Brazil.

Géssica de Souza Martins, Universidade Estadual do Ceará

Graduating in Nutrition. Fametro University Center, Nutrition Course. Fortaleza, Ceará, Brazil.

Daniel Freire Lima, Universidade Estadual do Ceará

Bachelor of Nutrition. State University of Ceará, Health Sciences Center, Nutrition Course. Fortaleza, Ceará, Brazil

Abelardo Barbosa Moreira Lima Neto, Universidade Estadual do Ceará

PhD in Biotechnology. Maurício de Nassau University Center, Health Sciences Center, Nutrition Course. Fortaleza, Ceará, Brazil

Ana Cristina Monteiro Moreira, Universidade Estadual do Ceará

PhD in Biochemistry. University of Fortaleza, Health Sciences Center, Pharmacy Course. Fortaleza, Ceará, Brazil.

Maria Izabel Florindo Guedes, Universidade Estadual do Ceará

PhD in Biochemistry. State University of Ceará, Health Sciences Center, Nutrition Course. Fortaleza, Ceará, Brazil

Citas

Alexandrova, A., Petrov, L., Zaekov, N., Bozhkov, B., & Zsheliaskova-Koynova, Z. (2017). Nutritional status in short-term overtraining boxers. Acta Scientifica Naturalis, 4(1), 76–83. https://doi.org/10.1515/asn-2017-0012

Aslam B., Basit M., Nisar M. A., Khurshid M., & Rasool M. H. (2017). Proteomics: Technologies and Their Applications. Journal of Chromatographic Science, 55(2), 182-196. https://doi.org/10.1093/chromsci/bmw167

Bongiovanni T., Pintus R., Dessì A., Noto A., Sardo S., Finco G., Corsello G., & Fanos V. (2019). Sportomics: metabolomics applied to sports. The new revolution? European Review for medical and Pharmacological Sciences, 23(24), 11011-11019. https://doi.org/10.26355/eurrev_201912_19807

Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., Gabbett, T. J., Coutts, A. J., Burgess, D. J., Gregson, W., & Cable, N. T. (2017). Monitoring Athlete Training Loads: Consensus Statement. International Journal of Sports Physiology and Performance, 12(s2), S2-161. https://doi.org/10.1123/ijspp.2017-0208

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Cadegiani, F. A., & Kater, C. E. (2017). Hormonal aspects of overtraining syndrome: a systematic review. BMC Sports Science, Medicine and Rehabilitation, 9(1), 1–15. https://doi.org/10.1186/s13102-017-0079-8

Dencker, M., Tanha, T., Karlsson, M. K., Wollmer, P., Andersen, L. B., & Thorsson, O. (2017). Cystatin B, cathepsin L and D related to surrogate markers for cardiovascular disease in children. PLOS ONE, 12(11), 1–13. https://doi.org/10.1371/journal.pone.0187494

Deutsch, O., Fleissig, Y., Zaks, B., Krief, G., Aframian, D. J., & Palmon, A. (2008). An approach to remove alpha amylase for proteomic analysis of low abundance biomarkers in human saliva. ELECTROPHORESIS, 29(20), 4150–4157. https://doi.org/10.1002/elps.200800207

Franco-Martínez, L., González-Hernández, J. M., Horvatić, A., Guillemin, N., Cerón, J. J., Martínez-Subiela, S., Sentandreu, M. Á., Brkljačić, M., Mrljak, V., Tvarijonaviciute, A., & Jiménez Reyes, P. (2020). Differences on salivary proteome at rest and in response to an acute exercise in men and women: A pilot study. Journal of Proteomics, 214, 103629. https://doi.org/10.1016/j.jprot.2019.103629

Garcia, L., Osti, R., Ribeiro, E., & Florindo, A. (2013). Validação de dois questionários para a avaliação da atividade física em adultos. Revista Brasileira de Atividade Física & Saúde, 18(3), 317–331. https://doi.org/10.12820/rbafs.v.18n3p317

Gonçalves, L. D. R., Campanhon, I. B., Domingues, R. R., Paes Leme, A. F., & Soares da Silva, M. R. (2014). Comparative Salivary Proteome of Hepatitis B- and C-Infected Patients. PLoS ONE, 9(11), 1–13. https://doi.org/10.1371/journal.pone.0113683

Hespanhol Junior, L. C., Pillay, J. D., van Mechelen, W., & Verhagen, E. (2015). Meta-Analyses of the Effects of Habitual Running on Indices of Health in Physically Inactive Adults. Sports Medicine, 45(10), 1455–1468. https://doi.org/10.1007/s40279-015-0359-y

Ihalainen, J. K., Schumann, M., Häkkinen, K., & Mero, A. A. (2016). Mucosal immunity and upper respiratory tract symptoms in recreational endurance runners. Applied Physiology, Nutrition, and Metabolism, 41(1), 96–102. https://doi.org/10.1139/apnm-2015-0242

Koffler, J., Holzinger, D., Sanhueza, G. A., Flechtenmacher, C., Zaoui, K., Lahrmann, B., Grabe, N., Plinkert, P. K., & Hess, J. (2013). Submaxillary gland androgen-regulated protein 3A expression is an unfavorable risk factor for the survival of oropharyngeal squamous cell carcinoma patients after surgery. European Archives of Oto-Rhino-Laryngology, 270(4), 1493–1500. https://doi.org/10.1007/s00405-012-2201-6

Koibuichi, E. R. I., & Suzuki, Y. O. S. H. I. O. (2014). Exercise upregulates salivary amylase in humans (Review). Experimental and Therapeutic Medicine, 7(4), 773–777. https://doi.org/10.3892/etm.2014.1497

Li, C.-Y, Hsu, G.-S, Suzuki, K., Ko, M.-H, & Fang, S.-H. (2015). Salivary Immuno Factors, Cortisol and Testosterone Responses in Athletes of a Competitive 5,000m Race. The Chinese Journal of Physiology, 58(4), 263–269. https://doi.org/10.4077/cjp.2015.bae367

Ligtenberg, A. J. M., Brand, H. S., van den Keijbus, P. A. M., & Veerman, E. C. I. (2015). The effect of physical exercise on salivary secretion of MUC5B, amylase and lysozyme. Archives of Oral Biology, 60(11), 1639–1644. https://doi.org/10.1016/j.archoralbio.2015.07.012

Lindsay, A., & Costello, J. T. (2016). Realising the Potential of Urine and Saliva as Diagnostic Tools in Sport and Exercise Medicine. Sports Medicine, 47(1), 11–31. https://doi.org/10.1007/s40279-016-0558-1

Liu, Y., & Yao, J. (2019). Research progress of cystatin SN in cancer. OncoTargets and Therapy, Volume 12, 3411–3419. https://doi.org/10.2147/ott.s194332

Ma, Y., Chen, Y., & Petersen, I. (2017). Expression and epigenetic regulation of cystatin B in lung cancer and colorectal cancer. Pathology - Research and Practice, 213(12), 1568–1574. https://doi.org/10.1016/j.prp.2017.06.007

Magacz, M., Kędziora, K., Sapa, J., & Krzyściak, W. (2019). The Significance of Lactoperoxidase System in Oral Health: Application and Efficacy in Oral Hygiene Products. International Journal of Molecular Sciences, 20(6), 1–31. https://doi.org/10.3390/ijms20061443

Maher, K., Jerič Kokelj, B., Butinar, M., Mikhaylov, G., Manček-Keber, M., Stoka, V., Vasiljeva, O., Turk, B., Grigoryev, S. A., & Kopitar-Jerala, N. š. (2014). A Role for Stefin B (Cystatin B) in Inflammation and Endotoxemia. Journal of Biological Chemistry, 289(46), 31736–31750. https://doi.org/10.1074/jbc.m114.609396

Manconi, B., Liori, B., Cabras, T., Vincenzoni, F., Iavarone, F., Castagnola, M., Messana, I., & Olianas, A. (2017). Salivary Cystatins: Exploring New Post-Translational Modifications and Polymorphisms by Top-Down High-Resolution Mass Spectrometry. Journal of Proteome Research, 16(11), 4196–4207. https://doi.org/10.1021/acs.jproteome.7b00567

Martinez Amat, A., Marchal Corrales, J. A., Rodriguez Serrano, F., Boulaiz, H., Prados Salazar, J. C., Hita Contreras, F., Caba Perez, O., Carrillo Delgado, E., Martin, I., & Aranega Jimenez, A. (2007). Role of alpha-actin in muscle damage of injured athletes in comparison with traditional markers. British Journal of Sports Medicine, 41(7), 442–446. https://doi.org/10.1136/bjsm.2006.032730

Martini, D., Gallo, A., Vella, S., Sernissi, F., Cecchettini, A., Luciano, N., Polizzi, E., Conaldi, P. G., Mosca, M., & Baldini, C. (2017). Cystatin S—a candidate biomarker for severity of submandibular gland involvement in Sjögren’s syndrome. Rheumatology, 56(6), 1031–1038. https://doi.org/10.1093/rheumatology/kew501

Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34(4), 486–496. https://doi.org/10.1016/j.psyneuen.2009.01.014

Ngounou Wetie, A. G., Wormwood, K. L., Russell, S., Ryan, J. P., Darie, C. C., & Woods, A. G. (2015). A Pilot Proteomic Analysis of Salivary Biomarkers in Autism Spectrum Disorder. Autism Research, 8(3), 338–350. https://doi.org/10.1002/aur.1450

Nieman, D. C., Lila, M. A., & Gillitt, N. D. (2019). Immunometabolism: A Multi-Omics Approach to Interpreting the Influence of Exercise and Diet on the Immune System. Annual Review of Food Science and Technology, 10(1), 341–363. https://doi.org/10.1146/annurev-food-032818-121316

Niemelä, M., Kangastupa, P., Niemelä, O., Bloigu, R., & Juvonen, T. (2016). Acute Changes in Inflammatory Biomarker Levels in Recreational Runners Participating in a Marathon or Half-Marathon. Sports Medicine - Open, 2(1), 1–8. https://doi.org/10.1186/s40798-016-0045-0

Palacios, G., Pedro-Chamizo, R., Palacios, N., Maroto-Sánchez, B., Aznar, S., González-Gross, M., & EXERNET Study Group. (2015). Biomarkers of physical activity and exercise. Nutricion Hospitalaria, 31(3), 237–244. https://doi.org/10.3305/nh.2015.31.sup3.8771

Peake, J. M., Neubauer, O., Walsh, N. P., & Simpson, R. J. (2017). Recovery of the immune system after exercise. Journal of Applied Physiology, 122(5), 1077–1087. https://doi.org/10.1152/japplphysiol.00622.2016

Peng, H. T., Savage, E., Vartanian, O., Smith, S., Rhind, S. G., Tenn, C., & Bjamason, S. (2016). Performance Evaluation of a Salivary Amylase Biosensor for Stress Assessment in Military Field Research. Journal of Clinical Laboratory Analysis, 30(3), 223–230. https://doi.org/10.1002/jcla.21840

Pollard, T. D. (2016). What We Know and Do Not Know About Actin. The Actin Cytoskeleton, 235, 331–347. https://doi.org/10.1007/164_2016_44

Powers, S. K., Radak, Z., & Ji, L. L. (2016). Exercise-induced oxidative stress: past, present and future. The Journal of Physiology, 594(18), 5081–5092. https://doi.org/10.1113/jp270646

Prado E., Souza G. H. M. F., Pegurier M., Vieira C., Lima-Neto A. B. M., Assis M., Guedes M. I. F.,

Koblitz M. G. B., Ferreira M. S. L., Macedo A. F., Bottino A., Bassini A., Cameron L. C. (2017). Non-targeted sportomics analyses by mass spectrometry to understand exercise-induced metabolic stress in soccer players. International Journal of Mass Spectrometry, 418, 1-5. https://doi.org/10.1016/j.ijms.2017.02.002

Rohleder, N., & Nater, U. M. (2009). Determinants of salivary α-amylase in humans and methodological considerations. Psychoneuroendocrinology, 34(4), 469–485. https://doi.org/10.1016/j.psyneuen.2008.12.004

Sarr, D., Tóth, E., Gingerich, A., & Rada, B. (2018). Antimicrobial actions of dual oxidases and lactoperoxidase. Journal of Microbiology, 56(6), 373–386. https://doi.org/10.1007/s12275-018-7545-1

Stattin, K., Lind, L., Elmståhl, S., Wolk, A., Lemming, E. W., Melhus, H., Michaëlsson, K., & Byberg, L. (2019). Physical activity is associated with a large number of cardiovascular-specific proteins: Cross-sectional analyses in two independent cohorts. European Journal of Preventive Cardiology, 26(17), 1865–1873. https://doi.org/10.1177/2047487319868033

Techatanawat, S., Surarit, R., Chairatvit, K., Roytrakul, S., Khovidhunkit, W., Thanakun, S., Izumi, Y., & Khovidhunkit, S.-P. (2019). Salivary and serum cystatin SA levels in patients with type 2 diabetes mellitus or diabetic nephropathy. Archives of Oral Biology, 104, 67–75. https://doi.org/10.1016/j.archoralbio.2019.05.020

Tékus, É., Váczi, M., Horváth-Szalai, Z., Ludány, A., Kőszegi, T., & Wilhelm, M. (2017). Plasma Actin, Gelsolin and Orosomucoid Levels after Eccentric Exercise. Journal of Human Kinetics, 56(1), 99–108. https://doi.org/10.1515/hukin-2017-0027

Tong, Y., Tar, M., Melman, A., & Davies, K. (2008). The opiorphin gene (ProL1) and its homologues function in erectile physiology. BJU International, 102(6), 736–740. https://doi.org/10.1111/j.1464-410x.2008.07631.x

Tuso, P. (2015). Strategies to Increase Physical Activity. The Permanente Journal, 19(4), 84–88. https://doi.org/10.7812/tpp/14-242

Warburton, D. E. R., & Bredin, S. S. D. (2016). Reflections on Physical Activity and Health: What Should We Recommend? Canadian Journal of Cardiology, 32(4), 495–504. https://doi.org/10.1016/j.cjca.2016.01.024

Whitfield, G. P., Pettee Gabriel, K. K., Rahbar, M. H., & Kohl, H. W. (2014). Application of the American Heart Association/American College of Sports Medicine Adult Preparticipation Screening Checklist to a Nationally Representative Sample of US Adults Aged ≥40 Years From the National Health and Nutrition Examination Survey 2001 to 2004. Circulation, 129(10), 1113–1120. https://doi.org/10.1161/circulationaha.113.004160

Wisner, A., Dufour, E., Messaoudi, M., Nejdi, A., Marcel, A., Ungeheuer, M.-N., & Rougeot, C. (2006). Human Opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proceedings of the National Academy of Sciences, 103(47), 17979–17984. https://doi.org/10.1073/pnas.0605865103

World Health Organization. (2017). WHO steps surveillance manual. WHO. https://www.who.int/ncds/surveillance/steps/STEPS_Manual.pdf?ua=1

Yamaguchi, M., Deguchi, M., Wakasugi, J., Ono, S., Takai, N., Higashi, T., & Mizuno, Y. (2006). Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment. Biosensors and Bioelectronics, 21(7), 1007–1014. https://doi.org/10.1016/j.bios.2005.03.014

Zauber, H., Mosler, S., Heßberg, A., & Schulze, W. X. (2012). Dynamics of salivary proteins and metabolites during extreme endurance sports - a case study. Proteomics, 12(13), 2221–2235. https://doi.org/10.1002/pmic.20110022

Descargas

Publicado

06/08/2021

Cómo citar

AMARAL, C. M. L.; PONTE, I. A. da .; MARTINS, G. de S.; LIMA, D. F.; LIMA NETO, A. B. M.; MONTEIRO MOREIRA, A. C. .; GUEDES, M. I. F. Análisis de las proteínas salivales de los corredores de la calle después de un evento deportivo real . Research, Society and Development, [S. l.], v. 10, n. 10, p. e114101018183, 2021. DOI: 10.33448/rsd-v10i10.18183. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18183. Acesso em: 26 nov. 2024.

Número

Sección

Ciencias de la salud