Toxicidad de compuestos de nitrógeno em peces influenciada por parâmetros físico-químicos: uma revisión narrativa
DOI:
https://doi.org/10.33448/rsd-v10i11.19779Palabras clave:
Antrópico; Ciclo del nitrógeno; Histopatologías; Impacto; Contaminantes.Resumen
Los compuestos de nitrógeno (nitrito, nitrato y amoníaco) se consideran tóxicos para los peces, ya que pueden promover cambios histológicos y bioquímicos, disminuir la capacidad de transporte de oxígeno en la sangre y afectar la aptitud (es decir, la aptitud del cuerpo en términos de crecimiento y natación). Estos compuestos se acumulan en el medio acuático a través de la excreción de organismos acuáticos, la descomposición de materia orgánica de los sistemas acuáticos y terrestres adyacentes y la entrada directa al sistema terrestre, afluentes y águas subterráneas. Los llamados cambios globales, como los cambios climáticos y de uso de la tierra, pueden mejorar e intensificar esta entrada de compuestos nitrogenados a través de actividades humanas, como la agricultura y la liberación de efluentes, como las águas residuales domésticas. Los peces suelen estar en contacto con diversos contaminantes y la combinación de factores ambientales como la temperatura, el pH, la disponibilidad de oxígeno y la dureza puede tener efectos sinérgicos o antagónicos. Sin embargo, no se comprende completamente cómo estos factores ambientales afectan la toxicidad del amoníaco, nitrito y nitrato. Por lo tanto, nuestro objetivo fue revisar la literatura para abordar los efectos de los compuestos nitrogenados y cómo los parámetros fisicoquímicos del água afectan la toxicidad de estos compuestos.
Citas
Alfonso, S., Gesto, M., & Sadoul, B. (2020). Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology, 39. https://doi.org/10.1111/jfb.14599
Côté, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society B: Biological Sciences, 283(1824). https://doi.org/10.1098/rspb.2015.2592
Çoǧun, H. Y., & Kargin, F. (2004). Effects of pH on the mortality and accumulation of copper in tissues of Oreochromis niloticus. Chemosphere, 55(2), 277–282. https://doi.org/10.1016/j.chemosphere.2003.10.007
Dutra, F. M., Cidemar Alab, J. H., Costa Gomes, M. K., Furtado, P. S., Valenti, W. C., & Cupertino Ballester, E. L. (2019). Nitrate acute toxicity to post larvae and juveniles of Macrobrachium amazonicum (Heller, 1862). Chemosphere, 242, 125229. https://doi.org/10.1016/j.chemosphere.2019.125229
Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230–235. https://doi.org/10.1179/2047480615z.000000000329
Gao, X. Q., Fei, F., Huo, H. H., Huang, B., Meng, X. S., Zhang, T., & Liu, B. L. (2020). Impact of nitrite exposure on plasma biochemical parameters and immune-related responses in Takifugu rubripes. Aquatic Toxicology, 218, 105362. https://doi.org/10.1016/j.aquatox.2019.105362
Gao, X. Q., Fei, F., Huo, H. H., Huang, B., Meng, X. S., Zhang, T., Liu, W. Bin, & Liu, B. L. (2019). Exposure to nitrite alters thyroid hormone levels and morphology in Takifugu rubripes. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 225, 108578. https://doi.org/10.1016/j.cbpc.2019.108578
Gomez Isaza, D. F., Cramp, R. L., & Franklin, C. E. (2020). Simultaneous exposure to nitrate and low pH reduces the blood oxygen-carrying capacity and functional performance of a freshwater fish. Conservation Physiology, 8(1), 1–15. https://doi.org/10.1093/conphys/coz092
Gomez Isaza, D. F., Cramp, R. L., & Franklin, C. E. (2021). Thermal plasticity of the cardiorespiratory system provides cross-tolerance protection to fish exposed to elevated nitrate. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 240, 108920. https://doi.org/10.1016/j.cbpc.2020.108920
Grynevych, N., Sliusarenko, A., Dyman, T., Sliusarenko, S., Gutyj, B., & Kukhtyn, M. (2018). Impact of provincial water management on environment and social welfare in West of Zayanderood Basin, Iran. Ukrainian Journal of Ecology, 8(1), 41–50. https://doi.org/10.15421/2018
Ha, N. T. K., Huong, D. T. T., Phuong, N. T., Bayley, M., & Jensen, F. B. (2019). Impact and tissue metabolism of nitrite at two acclimation temperatures in striped catfish (Pangasianodon hypophthalmus). Aquatic Toxicology, 212, 154–161. https://doi.org/10.1016/j.aquatox.2019.05.008
Jimenez, J. E., & Zaniboni-Filho, E. (2013). Adaptations of the piava (Leporinus obtusidens) juvenile exposed to hypoxia. Boletim Do Instituto de Pesca, 39(4), 439–444.
Kellock, K. A., Moore, A. P., & Bringolf, R. B. (2018). Chronic nitrate exposure alters reproductive physiology in fathead minnows. Environmental Pollution, 232, 322–328. https://doi.org/10.1016/j.envpol.2017.08.004
Kim, J. H., & Kang, J. C. (2016). The immune responses in juvenile rockfish, Sebastes schlegelii for the stress by the exposure to the dietary lead (II). Environmental Toxicology and Pharmacology, 46, 211–216. https://doi.org/10.1016/j.etap.2016.07.022
Kim, J. H., Park, H. J., Hwang, I. K., Han, J. M., Kim, D. H., Oh, C. W., Lee, J. S., & Kang, J. C. (2017). Toxic effects of juvenile sablefish, Anoplopoma fimbria by ammonia exposure at different water temperature. Environmental Toxicology and Pharmacology, 54, 169–176. https://doi.org/10.1016/j.etap.2017.07.008
Kir, M., & Sunar, M. C. (2018). Acute Toxicity of Ammonia and Nitrite to Sea Bream, Sparus aurata (Linnaeus, 1758), in Relation to Salinity. Journal of the World Aquaculture Society, 49(3), 516–522. https://doi.org/10.1111/jwas.12448
Kır, M., Sunar, M. C., & Gök, M. G. (2019). Acute ammonia toxicity and the interactive effects of ammonia and salinity on the standard metabolism of European sea bass (Dicentrarchus labrax). Aquaculture, 511, 734273. https://doi.org/10.1016/j.aquaculture.2019.734273
Kubitza, F. (2019). O impacto da amônia, do nitrito e do nitrato sobre o desempenho e a saúde dos peixes e camarões. A água na aquicultura | Parte 3. 1–27.
Lefevre, S., McKenzie, D. J., & Nilsson, G. E. (2017). Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. Global Change Biology, 23(9), 3449–3459. https://doi.org/10.1111/gcb.13652
Li, M., Zhang, M., Qian, Y., Shi, G., & Wang, R. (2020). Ammonia toxicity in the yellow catfish (Pelteobagrus fulvidraco): The mechanistic insight from physiological detoxification to poisoning. Fish and Shellfish Immunology, 102, 195–202. https://doi.org/10.1016/j.fsi.2020.04.042
Lin, Y., Miao, L. H., Pan, W. J., Huang, X., Dengu, J. M., Zhang, W. X., Ge, X. P., Liu, B., Ren, M. C., Zhou, Q. L., Xie, J., Pan, L. kun, & Xi, B. wen. (2018). Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead carp, Aristichthys nobilis. Fish and Shellfish Immunology, 76, 126–132. https://doi.org/10.1016/j.fsi.2018.02.015
Martinez, C. B. R., Azebedo, F., & Winkaler, E. U. (2006). Toxicidade e Efeitos da Amônia em Peixes Neotropicais. Tópicos Especiais Em Biologia Aquática e Aqüicultura, 81–95.
Mehta, K. (2017). Impact of Temperature on Contaminants Toxicity in Fish Fauna: A Review. Indian Journal of Science and Technology, 10(18), 1–6. https://doi.org/10.17485/ijst/2017/v10i18/112663
Moore, A. P., & Bringolf, R. B. (2020). Comparative Toxicity of Nitrate to Common and Imperiled Freshwater Mussel Glochidia and Larval Fishes. Archives
of Environmental Contamination and Toxicology, 78(4), 536–544. https://doi.org/10.1007/s00244-020-00708-z
Opinion, A. G. R., De Boeck, G., & Rodgers, E. M. (2020). Synergism between elevated temperature and nitrate: Impact on aerobic capacity of European grayling, Thymallus thymallus in warm, eutrophic waters. Aquatic Toxicology, 226, 105563. https://doi.org/10.1016/j.aquatox.2020.105563
Pankhurst, N. W., & Munday, P. L. (2011). Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research, 62(9), 1015–1026. https://doi.org/10.1071/MF10269
Paul, S., Mandal, A., Bhattacharjee, P., Chakraborty, S., Paul, R., & Kumar Mukhopadhyay, B. (2019). Evaluation of water quality and toxicity after exposure of lead nitrate in fresh water fish, major source of water pollution. Egyptian Journal of Aquatic Research, 45(4), 345–351. https://doi.org/10.1016/j.ejar.2019.09.001
Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 124, S62. https://doi.org/10.1016/s1095-6433(99)90247-7
Rodgers, E. M., Opinion, A. G. R., Gomez Isaza, D. F., Rašković, B., Poleksić, V., & De Boeck, G. (2021). Double whammy: Nitrate pollution heightens susceptibility to both hypoxia and heat in a freshwater salmonid. Science of the Total Environment, 765. https://doi.org/10.1016/j.scitotenv.2020.142777
Silva, M. J. Dos S., Costa F. B. C., Leme, F. P.; Takata, R., Costa, D. C., Matitioli, C. C., Luz, R. K., Miranda-Filho, K. C. (2017). Biological responses of Neotropical freshwater fish Lophiosilurus alexandri exposed to ammonia and nitrite. Science of the Total Environment, 616–617, 1566–1575.
Vitousek, P. M., Mooney, H. A., Lubchenco, J., Melillo, J. M. (1997). Human Domination of Earth Ecosystems. Science, 278(5335), 494–499.
Wang, J., Tang, H., Zhang, X., Xue, X., Zhu, X., Chen, Y., & Yang, Z. (2017). Mitigation of nitrite toxicity by increased salinity is associated with multiple physiological responses: A case study using an economically important model species, the juvenile obscure puffer (Takifugu obscurus). Environmental Pollution, 232, 137–145. https://doi.org/10.1016/j.envpol.2017.09.026
Wang, Y., Kong, X., Peng, Z., Zhang, H., Hu, W., & Zhou, X. (2020) Retenção de nitrogênio e fósforo no Lago Chaohu, China: implicações para o manejo da eutrofização. Environmental Science and Pollution Research. 27, 41488–41502. https://doi.org/10.1007/s11356-020-10024-7
Yang, Z., & Chen, Y. (2006). Salinity tolerance of embryos of obscure puffer Takifugu obscurus. Aquaculture, 253(1–4), 393–397. https://doi.org/10.1016/j.aquaculture.2005.08.014
Zhang, W., Xia, S., Zhu, J., Miao, L., Ren, M., Lin, Y., Ge, X., & Sun, S. (2019). Growth performance, physiological response and histology changes of juvenile blunt snout bream, Megalobrama amblycephala exposed to chronic ammonia. Aquaculture, 506, 424–436. https://doi.org/10.1016/j.aquaculture.2019.03.072
Zhao, L., Cui, C., Liu, Q., Sun, J., He, K., Adam, A. A., Luo, J., Li, Z., Wang, Y., & Yang, S. (2020). Combined exposure to hypoxia and ammonia aggravated biological effects on glucose metabolism, oxidative stress, inflammation and apoptosis in largemouth bass (Micropterus salmoides). Aquatic Toxicology, 224, 105514. https://doi.org/10.1016/j.aquatox.2020.105514
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Thaís Paula de Araújo; Ludmila Silva Brighenti; Hélio Batista dos Santos; Ana Hortência Fonseca Castro; Ralph Gruppi Thomé

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.