Estructura de la población de especies arbóreas del sotobosque y del dosel/emergentes en los remanentes de la Mata Atlántica brasileña con diferentes estados de conservación
DOI:
https://doi.org/10.33448/rsd-v10i11.19897Palabras clave:
Fragmentación forestal; Regeneración forestal; Ecología de poblaciones; Tala selectiva; Bosque tropical.Resumen
El tamaño y estructura espacial de las poblaciones son una síntesis de atributos demográficos e indicadores de capacidad competitiva, colonización y supervivencia. En este estudio, el objetivo fue analizar el tamaño y la estructura espacial de un grupo de poblaciones de árboles de sotobosque y dosel/emergentes en dos fragmentos de bosque semideciduo, uno con historia de tala selectiva y el otro sin evidencia de tala selectiva. Se seleccionaron seis especies con valores altos de importancia (VI) y de diferentes gremios y se realizó el análisis de tamaño y estructura espacial en ambas áreas. comparamos los resultados por área. Se encontraron diferencias de tamaño y estructuras espaciales entre las dos áreas, incluidas las especies no explotadas directamente. En el bosque donde se realizó la tala selectiva, la estructura de tamaño para todas las especies mostró un coeficiente de asimetría más alto, mostrando una mayor proporción de juveniles. El patrón de distribución aleatoria se observó para la mayoría de las especies en ambos fragmentos. Algunas especies de dosel/emergentes tuvieron menor abundancia en las clases de mayor altura. La tala selectiva cambió el patrón de poblaciones. La selección de especies basada en VI junto con los patrones de distribución espacial contribuye a demostrar los impactos de la exploración. El área con antecedentes de tala selectiva lo es rodeada por una matriz agrícola, lo que limita la llegada y propagación de propágulos de especies tolerantes a la sombra. Se hacen necesarios los esfuerzos para la conectividad con otros fragmentos de bosque en los alrededores.
Citas
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes, G., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. doi.org/10.1127/0941-2948/2013/0507
Ayres, M., Ayres J, M., Ayres, D. L., & Santos, A. D. A. (2007). Aplicações estatísticas nas áreas das ciências bio-médicas. Instituto Mamirauá.
Batista, W. B., & Platt, W. J. (2003). Tree population responses to hurricane disturbance: syndromes in a south-eastern USA old-growth forest. Journal of Ecology, 197–212.
Bendel, R. B., Higgins, S. S., Teberg, J. E., & Pyke, D. A. (1989). Comparison of skewness coefficient, coefficient of variation, and Gini coefficient as inequality measures within populations. Oecologia, 78(3), 394–400. doi.org/10.1007/BF00379115
Berry, N. J., Phillips, O. L., Ong, R. C., & Hamer, K. C. (2008). Impacts of selective logging on tree diversity across a rainforest landscape: the importance of spatial scale. Landscape Ecology, 23(8), 915–929. doi.org/10.1007/s10980-008-9248-1
Bertolini, I. C., Watzlawick, L. F., Sens, T. M. Z. G., Vantroba, A. P., Schran, J. A., & Pott, C. A. (2020). Influência das variáveis climáticas no incremento diamétrico de Bauhinia forficata Link, Mimosa scabrella Benth. e Schinus terebinthifolius Raddi. Research, Society and Development, 9(4), e185942859–e185942859.
Bianchini, E., Garcia, C. C., Pimenta, J. A., & Torezan, J. (2010). Slope variation and population structure of tree species from different ecological groups in South Brazil. Anais Da Academia Brasileira de Ciências, 82(3), 643–652. doi.org/10.1590/S0001-37652010000300012
Bovolenta, Y. R. (2011). Influência do estado de conservação de fragmentos florestais na estrutura de populações de espécies arbóreas de diferentes estratos verticais. Dissertação de Mestrado, Universidade Estadual de Londrina, Londrina, PR, Brasil.
Brachtvogel, C., Pereira, Z. V., & Silva, S. M. (2020). Spatial variation of seed rain in deciduous tropical forest. Research, Society and Development, 9(9), e879997956–e879997956
Brocardo, C. R., Pedrosa, F., & Galetti, M. (2018). Forest fragmentation and selective logging affect the seed survival and recruitment of a relictual conifer. Forest Ecology and Management, 408, 87–93.
Brower, J. E., & Zar, J. H. (1984). Field and laboratory methods for general ecology. Brown Publishers.
Burton, J. I., Zenner, E. K., Frelich, L. E., & Cornett, M. W. (2009). Patterns of plant community structure within and among primary and second-growth northern hardwood forest stands. Forest Ecology and Management, 258(11), 2556–2568. doi.org/10.1016/j.foreco.2009.09.012
Callaghan, C. T., Bino, G., Major, R. E., Martin, J. M., Lyons, M. B., & Kingsford, R. T. (2019). Heterogeneous urban green areas are bird diversity hotspots: insights using continental-scale citizen science data. Landscape Ecology, 34(6), 1231–1246. doi.org/10.1007/s10980-019-00851-6
Carvalho, P. E. R. (1994). Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Colombo: EMBRAPA-CNPF.
Chisholm, R. A., & Fung, T. (2020). Janzen-Connell effects are a weak impediment to competitive exclusion. The American Naturalist, 196(5), 649–661. doi.org/10.1086/711042
Condit, R., Ashton, P. S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., Hubbell, S. P., Foster, R. B., Itoh, A., & LaFrankie, J. V. (2000). Spatial patterns in the distribution of tropical tree species. Science, 288(5470), 1414–1418. doi.org/10.1126/science.288.5470.1414
Coomes, D. A., & Allen, R. B. (2007). Mortality and tree‐size distributions in natural mixed‐age forests. Journal of Ecology, 95(1), 27–40. doi.org/10.1111/j.1365-2745.2006.01179.x
Cramér, H. (1999). Mathematical methods of statistics. Princeton: Princeton University Press. doi.org/10.2307/2226151
Cunha, J. A. S., Fonsêca, N. C., Cunha, J. S. A., dos Santos Rodrigues, L., de Gusmão, R. A. F., & Lins-e-Silva, A. C. B. (2021). Selective logging in a chronosequence of Atlantic Forest: drivers and impacts on biodiversity and ecosystem services. Perspectives in Ecology and Conservation, 19(3), 286–292.
Dale, M. R. T., & Fortin, M. J. (2014). Spatial analysis: a guide for ecologists. Cambridge: Cambridge University Press.
Eisenlohr, P. V, Oliveira-Filho, A. T., & Prado, J. (2015). The Brazilian Atlantic Forest: new findings, challenges and prospects in a shrinking hotspot. Biodiversity and Conservation, 24, 2129–2133. doi.org/10.1007/s10531-015-0995-4
Fonseca, M. G., Martini, A. M. Z., & dos Santos, F. A. M. (2004). Spatial structure of Aspidosperma polyneuron in two semi‐deciduous forests in Southeast Brazil. Journal of Vegetation Science, 15(1), 41–48. doi.org/10.1111/j.1365-2745.2008.01377.x
Getzin, S., Wiegand, T., Wiegand, K., & He, F. (2008). Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology, 96(4), 807–820.
Guariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148(1), 185–206.
Haddad, T. M., Hertel, M. F., Bianchini, E., & Pimenta, J. A. (2016). Architecture of four tree species from different strata of a semideciduous forest in southern Brazil. Australian Journal of Botany, 64(2), 89–99. doi.org/10.1071/BT15199
Jia, S., Wang, X., Yuan, Z., Lin, F., Ye, J., Lin, G., Hao, Z., & Bagchi, R. (2020). Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications, 11(1), 1–9. doi.org/10.1038/s41467-019-14140-y
Kelly, C. K., Smith, H. B., Buckley, Y. M., Carter, R., Franco, M., Johnson, W., Jones, T., May, B., Ishiwara, R. P., & Pèrez‐Jimènez, A. (2001). Investigations in commonness and rarity: a comparative analysis of co‐occurring, congeneric Mexican trees. Ecology Letters, 4(6), 618–627.
Lammertink, M., Fernández, J. M., & Cockle, K. L. (2020). Comparison of nesting ecology of three co-existing Atlantic Forest woodpeckers reveals narrow specialization in the Helmeted Woodpecker Celeus galeatus. Acta Ornithologica, 55(1), 101–110.
Laurans, M., Hérault, B., Vieilledent, G., & Vincent, G. (2014). Vertical stratification reduces competition for light in dense tropical forests. Forest Ecology and Management, 329, 79–88.
Legendre, P., & Fortin, M. J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80(2), 107–138.
Lemmon, P. E. (1956). A spherical densiometer for estimating forest overstory density. Forest Science, 2(4), 314–320.
Liebsch, D., Maçaneiro, J. P., Marcon, A. K., & Galvão, F. (2016). Influência de impactos antrópicos em fragmentos de Floresta Ombrófila Mista em Santa Catarina. Pesquisa Florestal Brasileira, 36(87), 277–287.
Liebsch, D., Velazco, S. J. E., Mikich, S. B., Marques, M. C. M., & Galvão, F. (2021). Effects of selective logging, fragmentation, and dominance of bamboos on the structure and diversity of Araucaria Forest fragments. Forest Ecology and Management, 487, 1-9 (118961).
Lima, R. A. F., Oliveira, A. A., Pitta, G. R., de Gasper, A. L., Vibrans, A. C., Chave, J., Ter Steege, H., & Prado, P. I. (2020). The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nature Communications, 11(1), 1–16.
Lima, T. A., Beuchle, R., Griess, V. C., Verhegghen, A., & Vogt, P. (2020). Spatial patterns of logging-related disturbance events: a multi-scale analysis on forest management units located in the Brazilian Amazon. Landscape Ecology, 35(9), 2083–2100.
Maestre, F. T., Escudero, A., & Bonet, A. (2008). Introducción al análisis espacial de datos en ecología y ciencias ambientales: métodos y aplicaciones. Dykinson: Universidad Rey Juan Carlos.
Montgomery, R., & Chazdon, R. J. (2002). Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia, 131(2), 165–174.
Morel, J. D., Pereira, J. A. A., dos Santos, R. M., de Aguiar-Campos, N., & Machado, E. L. M. (2018). Functional Characterization of an Anthropized Atlantic Forest Fragment. Journal of Tropical Forest Science, 30(4), 537–545.
Nitsche, P. R., Caramori, P. H., Ricce, W. da S., & Pinto, L. F. D. (2019). Atlas Climático do Estado do Paraná. IAPAR.
Oden, N. L. (1984). Assessing the significance of a spatial correlogram. Geographical Analysis, 16(1), 1-16.
Onoda, Y., Saluñga, J. B., Akutsu, K., Aiba, S., Yahara, T., & Anten, N. P. R. (2014). Trade‐off between light interception efficiency and light use efficiency: implications for species coexistence in one‐sided light competition. Journal of Ecology, 102(1), 167–175.
Pearcy, R. W. (1983). The light environment and growth of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia, 58(1), 19–25.
Plotkin, J. B., Potts, M. D., Leslie, N., Manokaran, N., LaFrankie, J., & Ashton, P. S. (2000). Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 207(1), 81–99.
Poorter, L., Hawthorne, W., Bongers, F., & Sheil, D. (2008). Maximum size distributions in tropical forest communities: relationships with rainfall and disturbance. Journal of Ecology, 96(3), 495–504.
Primack, R. B., & Lee, H. S. (1991). Population dynamics of pioneer (Macaranga) trees and understorey (Mallotus) trees (Euphorbiaceae) in primary and selectively logged Bornean rain forests. Journal of Tropical Ecology, 439–457.
Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142(6), 1141–1153.
Rodrigues, D. R., Bovolenta, Y. R., Pimenta, J. A., & Bianchini, E. (2016). Height structure and spatial pattern of five tropical tree species in two seasonal semideciduous forest fragments with different conservation histories. Revista Árvore, 40(3), 395–405. doi.org/10.1590/0100-67622016000300003
Rodrigues, D. R., Bovolenta, Y. R., Pimenta, J. A., & Bianchini, E. (2019). Selective logging alters allometric relationships of five tropical tree species in seasonal semi-deciduous forests. Journal of Forestry Research, 30(5), 1633–1639. doi.org/10.1007/s11676-018-0705-7
Rosenberg, M. S., & Anderson, C. D. (2011). PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods in Ecology and Evolution, 2(3), 229–232.
RStudio. (2020). R Studio: integrated development environment for R. Version 1.3.1056, 1048.
Rutishauser, E., Hérault, B., Petronelli, P., & Sist, P. (2016). Tree height reduction after selective logging in a Tropical Forest. Biotropica, 48(3), 285–289.
Saldarriaga, J. G., & Uhl, C. (1991). Recovery of forest vegetation following slash-and-burn agriculture in the upper Rio Negro. In A. Gómez-Pompa, T. C. Whitmore, & M. Hadley (Eds.), Tropical rain forest: regeneration and management (pp. 303–312). London: Blackwell Science.
Santo-Silva, E. E., Almeida, W. R., Tabarelli, M., & Peres, C. A. (2016). Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape. Plant Ecology, 217(9), 1129–1140.
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. Á., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Cunha, T. J. F., & Oliveira, J. B. (2013). Sistema brasileiro de classificação de solos. doi.org/ISBN 978-85-7035-198-2
Santos, J. S., Leite, C. C. C., Viana, J. C. C., dos Santos, A. R., Fernandes, M. M., de Souza Abreu, V., do Nascimento, T. P., dos Santos, L. S., de Moura Fernandes, M. R., & da Silva, G. F. (2018). Delimitation of ecological corridors in the Brazilian Atlantic Forest. Ecological Indicators, 88, 414–424.
Sapkota, I. P., Tigabu, M., & Odén, P. C. (2009). Spatial distribution, advanced regeneration and stand structure of Nepalese Sal (Shorea robusta) forests subject to disturbances of different intensities. Forest Ecology and Management, 257(9), 1966–1975.
Siegel, S., & Castellan Jr, N. J. (1975). Estatística não-paramétrica para ciências do comportamento. Artmed Editora.
Silva, D. A. da, & Vibrans, A. C. (2019). Canopy Architecture After Selective Logging in a Secondary Atlantic Rainforest in Brazil. Floresta e Ambiente, 26(4).
Silva, F. C., & Soares-Silva, L. H. (2000). Arboreal flora of the Godoy Forest State Park, Londrina, PR. Brazil. Edinburgh Journal of Botany, 57(1), 107–120.
Silva Ribeiro, J. E., Figueiredo, F. R. A., dos Santos Coêlho, E., & Leite, A. P. (2020). Aspectos morfofisiológicos de Ceiba glaziovii sob níveis de sombreamento. Research, Society and Development, 9(8), e257985736–e257985736
Smith, H. (2000). Phytochromes and light signal perception by plants: an emerging synthesis. Nature, 407(6804), 585–591.
Soares-Silva, L. H., & Barroso, G. M. (1992). Fitossociologia do estrato arbóreo da floresta na porção norte do Parque Estadual Mata dos Godoy, Londrina-PR, Brasil. In “Anais Do VIII Congresso Da Sociedade Botânica de São Paulo”.
Sobral, M., Proença, C., Souza, M., Mazine, F., & Lucas, E. (2015). Myrtaceae in lista de espécies da flora do Brasil. Rio de Janeiro: Jardim Botânico Do Rio de Janeiro.
Solís, S., Lobo, J., & Grimaldo, M. (2009). Phenology and recruitment of Caryocar costaricense (Caryocaceae), an endemic tree species of Southern Central America. Revista de Biología Tropical, 57(3), 771–780.
SOS Mata Atlântica & INPE. (2020). Atlas dos Remanescentes Florestais da Mata Atlântica. https://mapas.sosma.org.br/
Souza, A. F. (2007). Ecological interpretation of multiple population size structures in trees: the case of Araucaria angustifolia in South America. Austral Ecology, 32(5), 524–533.
Swaine, M. D., & Whitmore, T. C. (1988). On the definition of ecological species groups in tropical rain forests. Vegetatio, 75(1–2), 81–86. doi.org/10.1007/BF00044629
Tabarelli, M., Mantovani, W., & Peres, C. A. (1999). Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biological Conservation, 91(2), 119–127. doi.org/10.1016/S0006-3207(99)00085-3
Tang, H., & Dubayah, R. (2017). Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proceedings of the National Academy of Sciences, 114(10), 2640–2644.
Tomé, M., Miglioranza, E., Vilhena, A. H. T., & Fonseca, E. P. (1999). Composição florística e fitossociológica do Parque Estadual Mata São Francisco. Revista Do Instituto Florestal, 11(1), 13–23.
Torezan, J. M. D. (Ed.). (2006). Ecologia do Parque Estadual Mata dos Godoy. Editora ITEDES.
Tsingalia, M. (2010). Impacts of selective logging on population structure and dynamics of a canopy tree (Olea capensis) in Kakamega forest. African Journal of Ecology, 48(3), 569–575.
Valladares, F., & Niinemets, Ü. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39.
Veloso, H. P., Rangel Filho, A. L. R., & Lima, J. C. A. (1991). Classificação da vegetação brasileira, adaptada a um sistema universal. Brasília: Instituto Brasileiro de Geografia e Estatística (IBGE).
Vicente, R. F. (2006). O Parque Estadual Mata dos Godoy. In J. M. D. Torezan (Ed.), Ecologia do Parque Estadual Mata dos Godoy. (pp. 13–18).
Wright, S. J., Muller-Landau, H. C., Condit, R., & Hubbell, S. P. (2003). Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology, 84(12), 3174–3185.
Zama, M. Y., Bovolenta, Y. R., Carvalho, E. S., Rodrigues, D. R., Araujo, C. G., Sorace, M. A. F., & Luz, D. G. (2012). Florística e síndromes de dispersão de espécies arbustivo-arbóreas no Parque Estadual Mata São Francisco, PR, Brasil. Hoehnea, 39, 369–378. dx.doi.org/10.1590/S2236-89062012000300002
Zucchi, M. I., Sujii, P. S., Mori, G. M., Viana, J. P. G., Grando, C., Silvestre, E. de A., Schwarcz, K. D., Macrini, C. M., Bajay, M. M., & Araújo, F. L. (2018). Genetic diversity of reintroduced tree populations in restoration plantations of the Brazilian Atlantic Forest. Restoration Ecology, 26(4), 694–701.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Yves Rafael Bovolenta; Diego Resende Rodrigues; Edmilson Bianchini; José Antonio Pimenta
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.