Procesos de extracción y usos industriales de los aceites de andiroba y açaí: una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i12.20227

Palabras clave:

Aceite; Andiroba; Açaí; Métodos de extracción; Aplicaciones industriales.

Resumen

La región amazónica tiene una gran diversidad de plantas ricas en compuestos bioactivos, cuya explotación racional contribuye al desarrollo sustentable de la región. Entre estos destacan la andiroba (Carapa guianense) y el açaí (Euterpe oleracea), de los cuales se extraen aceites que tienen un gran potencial para ser utilizados en la cosmética, farmacéutica, alimentaria e incluso en la producción de combustibles renovables. Así, el objetivo fue realizar una investigación bibliográfica sobre los métodos de extracción de los aceites de andiroba y açaí, así como sus aplicaciones en la industria y las nuevas innovaciones tecnológicas. Dichos aceites se utilizan ampliamente en la medicina popular debido a sus numerosas propiedades medicinales. El aceite de andiroba tiene propiedades antiinflamatorias, antimicrobianas, insecticidas, etc., que se atribuyen principalmente a su contenido de limonoides. El aceite de Açaí, por su parte, tiene una gran cantidad de compuestos fenólicos, como las antocianinas y un perfil de ácidos grasos beneficiosos para la salud, siendo ampliamente utilizado como antioxidante, agente anticancerígeno, combatiendo enfermedades cardiovasculares y neurodegenerativas. Existen numerosos métodos utilizados para extraer estos aceites, incluyendo artesanal, prensado en frío, fluido supercrítico, solventes orgánicos, enzimáticos, etc. Aun así, el método de prensado en frío sigue siendo el más utilizado por las industrias, ya que obtiene productos de mejor calidad y conserva sus compuestos bioactivos, siendo el mercado de la cosmética el que más utiliza estos aceites.

Biografía del autor/a

Fabiana Cristina de Araújo Nascimento, Universidade Federal do Pará

Programa de pos graduação em ciência e tecnologia de alimentos (PPGCTA)

Gyselle dos Santos Conceição, Universidade Federal do Pará

programa de pos graduação em inovações farmacêuticas (PPGIF)

Citas

Ahmad, T.; Masoodi, F. A.; Rather, S. A.; Wani, S. M. & Gull, A. (2019). Supercritical Fluid Extraction: A Review. Journal og Biological and Chemical Chronicles., 5 (1), 114-122. http://dx.doi.org/10.33980/jbcc.2019.v05i01.019.

Akoh, C. C. & Min, D. B. (2007). Food lipids: chemistry, nutrition and biotechnology. New York: CRC Press.

Ambat, I.; Srivastava, V. & Sillanpää, M. (2018). Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable Sustainable. Energy Reviste, 90, 356-369. https://doi.org/10.1016/j.rser.2018.03.069

Amazon Oil. (2021). Andiroba e Açaí. https://www.amazonoil.com.br/pt/produtos-da-floresta.

AOCS Methods, (2000). AOCS Bd 3-52 em Official Methods and Recommended Practices of the American Oil Chemists’ Society; 5th ed.; Firestone, D., ed.; AOCS Press: Champaign.

Arnáiz, E.; Bernal, J.; Martín, M. T.; Nozal, M. J.; Bernal, J. L., & Toribio, L. (2012). Supercritical fluid extraction of free amino acids from broccoli leaves. Journal of chromatography A, 49-53. https://doi.org/10.1016/j.chroma.2012.04.066.

Batista, C. C. R.; Oliveira, M. S.; Araújo, M. E.; Rodrigues, A. M. C.; Botelho, J. R. S.; Souza Filho, A. P. S.; Machado, N. T. & Carvalho Junior, R. N. (2016). Supercritical CO2 extraction of açaí (Euterpe oleracea) berry oil: Global yield, fatty acids, allelopathic activities, and determination of phenolic and anthocyanins total compounds in the residual Pulp. Journal Supercritical Fluids, 107, 364-369. http://dx.doi.org/10.1016/j.supflu.2015.10.006.

Beraca Ingredientes Naturais S/A. (2021) Nossos produtos. https://www.beraca.com/nossos-produtos/

Bichara, C. M. G. & Rogez, H. (2011). Chapter 1: Açaí (Euterpe oleracea Martius). In: Yahia, E. M. (Ed.), Postharvest Biology and Technology of Tropical and Subtropical Foods: Açai to Citrus, vol. 2. Woodhead Publishing, Oxford, England, p. 1-23.

Boeira, L. S.; Freitas, P. H. B.; Uchôa, N. R.; Bezerra, J. A.; Cád, S. V.; Duvoisin, S. J.; Albuquerque, P. M.; Mar, J. M.; Ramos, A. S.; Machado, M. B. & Maciel, L. R. (2020). Chemical and sensorial characterization of a novel alcoholic beverage produced with native acai (Euterpe precatoria) from different regions of the Amazonas state. LWT, 117, 108632. https://doi.org/10.1016/j.lwt.2019.108632.

Brito, A. D.; Silva, T. F. A. Coelho, R. F. R., & Rosal, L. F. (2020). Saberes e práticas tradicionais da extração do óleo de Carapa guianenses Abul. (andiroba) em área de várzea do município de Igarapé-Mirin, PA. Revista Brasileira de Agroecologia, 15 (3), 110-122. https://doi.org/10.33240/rba.v15i3.23165.

Buratto, R. T., Cocero, M. J., & Martín, A. (2021) Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction. Chemical Engineering and Processing - Process Intensification, 160, 108269. https://doi.org/10.1016/j.cep.2020.108269.

Castro, R. C.; Costa, L. F. S.; Costa, L. M. D. A., & Martins, G. B. C. (2021). Extração e análises físico-químicas do óleo de açaí (Euterpe oleracea Mart.). Research, Society and Development, 10 (8), 1-5. http://dx.doi.org/10.33448/rsd-v10i8.17358.

Cabral, E. C.; Cruz, G. F.; Simas, R. C.; Sandivo, G. B.; Gonçalves, L. V.; Leal, R. V. P.; Silva, R. C.; Silva, J. C. T.; Barata, L. E. S.; Cunha, V. S.; França, L. F.; Daroda, R. J.; Sá, G. F.; Eberlin, M. N. (2013). Typification and quality controlo f the Andiroba (Carapa guianensis) oil via mass spectrometry gingerprinting. Analytical Methods, 5, 1385-1391. https://doi.org/10.1039/c3ay25743f.

Carvalho, A, K. F.; Bento, H. B. S.; Lima, R. & Castro, H. F. (2020). Use and Reusability of the Na/Nb2O5 Catalyst in the Ethanolysis of Different Feedstocks for Biofuel Production: Confirmation of Heterogeneity of the Catalyst. Energy Fuels, 34, 7105-7111. https://dx.doi.org/10.1021/acs.energyfuels.0c00246.

Carvalho, B. G. G. (2013). Avaliação preliminar de fitocosmético preparado com óleo de açaí. Monografia. Faculdade Educação e meio Ambiente.

Coelho, A. A.; Gama, J. R. V.; Ribeiro, R. B. S.; Oliveira, F. A. (2018). Andiroba: usos e extração do óleo em área de assentamento no oeste paraense. Terceira margem Amazônia, 3 (11), 1-16. https://doi.org/10.36882/2525-4812.2018v3i11p%25p.

Conab – Companhia nacional de abastecimento (2019). Açaí (fruto) - Análises do mercado agropecuário e extrativo. https://www.conab.gov.br/info-agro/item/download.

Dabaja,M. Z.; Bizzo, B. M., & Pereira, E. B. (2018). Síntese de biodiesel a partir do açaí empregando lipase comercial imobilizada em suporte de baixo custo. Revista da Universidade Vale do Rio Verde, 16 (2), 1-11. http://dx.doi.org/10.5892/ruvrd.v16i2.5016.

Echeverri, D. A.; Cardeño, F., & Rios, L. A. (2011). Glycerolysis of soybean oil with crude glycerol containing residual alkaline catalysts from biodiesel production. JAOCS J. Am. Oil Chem. Soc. 88, 551-557. http://dx.doi.org/10.1007/s11746-010-1688-5.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa - 2ª ed., Editora Artes Médicas, 743p.

Evêncio, K. M. M.; Teixeira, S. L.; Rodrigues, K. G. F. C.; Feitosa, F. A., & Fontes, W. J. S. (2019). Dos tipos de conhecimento às pesquisas qualitativas em educação. Id on line Revista Científica Multidisciplinar e de Psicologia, 13 (47), 440-452. https://doi.org/10.14295/idonline.v13i47.2105.

Ferreira, B. S.; Almeida, C. G.; Faza, L. P.; Almeida, A.; Diniz, C. G.; Silva, V. L.; Grazul, R. M., & Hyaric, M. L. (2011). Comparative properties of Amazonian oils obtained by diferente extraction methods. Moleculles, 16, 5875-5881. https://doi.org/ 10.3390 / molecules16075875.

Ferreira, E. S.; Rogez, H. L. G., & Herman, C. A. N. P. (2018). Effect of the combination of enzymatic preparations on the aqueous extraction yield of the oil from the pulp of euterpe oleracea fruit. Brazilian Journal of Chemical Engineering, 35 (4), 1193-1201. https://dx.doi.org/10.1590/0104-6632.20180354s20170305.

Fontenelles, A. B. L., & Yamaguchi, K. K. L. (2018). Uso de óleo de andiroba (Carapa guianensis) na produção de velas artesanais como instrumento para o ensino de Química. Exatas Online, 9 (2), 39-52. http://www2.uesb.br/exatasonline/images/V9N2pag39-52.pdf

Forget, P. M. & Kenfack, D. (2008). Carapa.org. A website dedicated to trees in the genus Carapa (Meliaceae). Taxinomy, biology, ecology and uses. Muséum National d'Histoire Naturelle, Brunoy, France.

Freitas, S. P.; Silva, O. F.; Miranda, I. C., & Coelho, M. A. Z. (2007). Extração e fracionamento simultâneo do óleo de castanha do Brasil com etanol. Ciencia e Tecnologia de Alimentos, Campinas, 27 (supl.), 14-17. https://doi.org/10.1590/S0101-20612007000500002.

Gonzales, W. A.; Machado, R. M.; Barreto, E. J. F.; Dall’Oglio, E. L.; Correia, J. C.; Borges, L. E. P.; Almeida, M. D.; Pastura, N. M. R.; Mendonça, N. B.; Sousa, P. T.; Nunes, P. P.; Rodrigo, R. M. S.; Souza, O. L., & Rodrigues, V. (2008). Biodiesel e óleo vegetal in natura: soluções energéticas para a Amazônia. 1ª Edição - Brasília: Ministério de Minas e Energia. https://www.mme.gov.br/luzparatodos/downloads/Solucoes.pdf.

Guimarães, S. C. N.; Alves, D. T. V.; Souza, R. B. M.; Costa, C. E. F.; Melo, K. C.; Oliveira, I. S.; Soares, S. D., & Santos, O. V. (2020). Desenvolvimento de formulações fermentadas probióticas mistas enriquecidas com óleos de frutos amazônicos. Brazilian Journal of Development, 6, (3), 10882-10901. http://doi.org/10.34117/bjdv6n3-093.

Henriques, M. G. & Penido, C. (2014). The therapeutic properties of Carapa guianensis. Current Pharmaceutical Design, 20 (6), 850-856. https://dx.doi.org/10.2174/13816128113199990048.

Iha, O. K.; Alves, F. C. S. C.; Suarez, P. A. Z.; Silva, C. R. P.; Meneghetti, M. R., & Meneghetti, S. M. P. (2014). Potential application of Terminalia catappa L. and Carapa guianensis oils for biofuel production: physical-chemical properties of neat vegetable oils, their methyl-esters and bio-oils (hydrocarbons). Industrial Crops and Products, 52, 95-98. http://dx.doi.org/10.1016/j.indcrop.2013.10.001.

Kenfack, D. A. (2011). A synoptic revision of Carapa (Meliaceae). Harvard Papers in Botany, 16 (2), 171-231. https://doi.org/10.3100/0.25.016.0201.

Kundu, J.; Chung, Y. I.; Kim, Y. H.; Tae, G. & Kundu, S.C. (2010). Silk fibroin nanoparticles for cellular uptake and control release. International Journal of Pharmaceutics., 388, 242-250. https://doi.org/ 10.1016 / j.ijpharm.2009.12.052.

Li, Y.; Fine, F.; Tixier, A. S. F.; Vian, M. A.; Carre, P.; Pages, X. & Chermat, F. (2014). Evaluation of alternative solventes for improvement of oil extraction from rapeseeds. Comptes Rendus Chimie, 17 (3), 242-251. https://doi.org/10.1016/j.crci.2013.09.002.

Liu, X.; Niu, Y.; Chen, K. C., & Chen, S. (2017). Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing. Mater. Sci. Eng. C, 71, 289-297. http://dx.doi.org/10.1016/j.msec.2016.10.019.

Luque, S. & Cervero, J. M. (2014). Novozym 435-catalyzed synthesis of fatty acid ethyl esters from soybean oil for biodiesel production. Biomass Bioenergy, 61, 131-137. http://dx.doi.org/10.1016/j.biombioe.2013.12.005.

Maia, A. C. (2017). Biorepelente com óleos essenciais de plantas da Amazônia é alternativa contra insetos. https://redesfito.far.fiocruz.br/index.php/noticias/385-biorepelente-com-oleos-essenciais-de-plantas-da-amazonia-e-alternativa-contra-insetos.

Marques, E. S.; Froder, J. G.; Carvalho, J. C. T.; Rosa, P. C. P.; Perazzo, F. F. & Maistro, E. L. (2016). Evaluation of the genotoxicity of Euterpe oleraceae Mart. (Arecaceae) fruit oil (açai), in mammalian cells in vivo. Food and Chemical Toxicology, 93, 13-19. https://dx.doi.org/ 10.1016/j.fct.2016.04.018

Medeiros, R. S.; Vieira, G.; Almeida, D. R. A. & Tomazello, M. (2018). New information for managing Copaifera multijuga Hayne for oleoresin yield. Forest Ecology Management, 414, 85-98. https://doi.org/10.1016/j.foreco.2018.02.009.

Melo, M. S.; Almeida, E. C. & Dantas, J. B. (2011). Boas práticas de manejo e extração de óleo vegetal de andiroba. 1ª ed. Santarém: IBAMA/FFEM/ADF.

Mendonça, A. P.; Almeida, F. A. C.; Oliveira, A. S.; Rosa, J. C.; Araújo, M. E. R., & Sampaio, P. T. B. (2020). Extração de óleo de andiroba por prensa: rendimento e qualidade de óleo de sementes submetidas a diferentes teores de água e temperatura de secagem. Scientia Florestalis. 48 (125), e2995. https://doi.org/10.18671/scifor.v48n125.09.

Meneguetti, N. F. P.; Meneguetti, D. U. O., & Siviero, A. (2019). Biotechnological potential of the Carapa guianensis, Bertholletia excelsa and Copaifera spp. Oils. Journal of Medicinal Plants Research, 13 (17), 413-422. https://doi.org/ 10.5897/JMPR2019.6828.

Milhomem-Paixão, S. S. R.; Fascineli, M. L.; Muehlmann, L. A.; Melo, K. M.; Salgado, H. L. C.; Joanitti, G. A.; Pieczarka, J. C.; Azevedo, R. B.; Santos, A. S., & Grisolia, C. K. (2017). Andiroba Oil (Carapa guianensis Aublet) Nanoemulsions: Development and Assessment of Cytotoxicity, Genotoxicity, and Hematotoxicity. Journal of Nanomaterials, 2017 (1), 1-11. https://doi.org/10.1155/2017/4362046.

Morais, L. R. B., & Gutjahr, E. (2012). Química de oleaginosas: valorização da biodiversidade amazônica. Belém, PA: Ed. do autor.

Nascimento, R. J. S.; Couri, S.; Antoniassi, R. & Freitas, S. P. (2008). Composição em ácidos graxos do óleo da polpa de açaí extraído com enzimas e com hexano. Revista Brasileira de Fruticultura, 30 (2), 498-502. https://dx.doi.org/10.1590/S0100-29452008000200040.

Nascimento, G. O.; Souza, D. P.; Santos, A. S.; Batista, J. F.; Rathinasabapathi, B.; Gagliardi, P. R., & Gonçalves, J. F. C. (2019). Lipidomic profiles from seed oil of Carapa guianensis Aubl. And Carapa vasquezii Kenfack and implications for the control of phytopathogenic fungi. Industrial Crops and Products., 129, 67-73. https://doi.org/10.1016/j.indcrop.2018.11.069

Natura Cosméticos S/A. (2021). Biocosméticos. https://www.naturabrasil.fr/pt-pt/acerca-da-natura-brasil/as-nossas-gamas/ekos.

Novello, Z.; Scapinello, J.; Magrob, J. D.; Zinc, G.; Luccio, M. D.; Tres, M. V. & Oliveira, J. V. (2015). Extraction, chemical characterization and antioxidant activity of andiroba seeds oil obtained from pressurized n-butane. Industrial Crops and Products, 76, 697-701. http://dx.doi.org/10.1016/j.indcrop.2015.07.075

Nyam, K. L.; Tan, C. P.; Karim, R.; Lai, O. M.; Long, K., & Man, Y. B. C. (2010). Extraction of tocopherol-enriched oils from Kalahari melon and roselle seeds by supercritical fluid extraction (SFE-CO2). Food Chemistry, 119 (3), 1278-1283. https://doi.org/10.1016/j.foodchem.2009.08.007.

Oliveira, M. S. P.; Carvalho, J. E. U.; Nascimento, W. M. O. & Müller, C. H. (2002). Cultivo do açaizeiro para produção de fruto. Ministério da agricultura, pecuária e abastecimento. BELÉM: EMBRAPA, Circular técnica nº 26.

Pacheco-Palencia, L. A.; Talcott, S. T., & Mertens-Talcott, S. (2008). Absorption and biological activity of phytochemical-rich extracts from açaí (Euterpe oleracea) pulp and oil in vitro. Journal of Agricultural and Food Chemistry, 56 (10), 3593-3600. https://doi.org/ 10.1021 / jf8001608.

Pacheco-Palencia, L. A.; Duncan, C. E. & Talcott, S. T. (2009). Phytochemical composition and thermal stability of two commercial açai species, Euterpe oleracea and Euterpe precatória. Food Chemistry, 115, 1199-1205. https://doi.org/10.1016/j.foodchem.2009.01.034.

Pereira, C. M. S.; Assis, W. S. & Araújo, C. S. (2015). O manejo da Andiroba e a contribuição para a preservação ambiental: o caso do Grupo de Trabalhadoras Artesanais e Extrativistas (GTAE) do Projeto de Assentamento Agroextrativista Praialta Piranheira (PAE)-PA. Cadernos de Agroecologia, 10 (3), 1-7. http://revistas.aba-agroecologia.org.br/index.php/cad/article/view/19234/13300.

Pillai, P. K. S.; Li, S.; Bouzidi, L., & Narine, S. S. (2016). Metathesized palm oil: fractionation strategies for improving functional properties of lipid-based polyols and derived polyurethane foams. Industrial Crops & Products, 84, 273–283. http://dx.doi.org/10.1016/j.indcrop.2016.02.021.

Pinto, E. R.; Lira-Guedes. A. C., & Guimarães. (2019). Boas práticas para produção de óleo de andiroba. 32p. Tefé, AM: IDSM - Instituto de Desenvolvimento Sustentável Mamirauá. https://www.mamiraua.org.br/documentos/098c65b4178ed3236d4f2f88fdc046e4.pdf

Prophiro, J. S.; Silva, M. A. N.; Kanis, L. A.; Rocha, L. C. B. P.; Duque-Luna, J. E. & Silva, O. S. (2012). First report on susceptibility of wild Aedes aegypti (Diptera: culicidae) using Carapa guianensis (Meliaceae) and Copaifera sp. (Leguminosae). Parasitology Research, 110, 699-710. https://doi.org/ 10.1007 / s00436-011-2545-7.

Ribeiro, M. C.; Vilas Boas, E. V. B; Riul, T. R.; Pantoja, L.; Marinho, H. A. & Santos, A. S. (2012). Influence of the extraction method and storage time on the physicochemical properties and carotenoid levels of pequi (Caryocar brasiliense Camb.) oil. Ciência e Tecnologia de Alimentos, Campinas, 32 (2), 386-392. https://dx.doi.org/10.1590/S0101-20612012005000053.

Rogez, H. (2000). Açaí: preparo, composição e melhoramento da conservação. Belém: EDUFA, 313p.

Santos, M. F. G.; Marmesat, S.; Brito, E. S.; Alves, R. E., & Dobarganes, M. C. (2013). Major components in oils obtained from Amazonian palm fruits. Grasas y Aceites, 64 (3), 328-334. https://doi.org/10.3989/gya.023513.

Santos, M. N.; Cunha, H. F. A.; Lira-Guedes, A. C.; Gomes, S. C. P. & Guedes, M. C. (2014). Saberes tradicionais em uma unidade de conservação localizada em ambiente periurbano de várzea: etnobiologia da andirobeira (Carapa guinensis Aublet). Boletim do Museu Paraense Emílio Goeld. Ciências Humanas, 9 (1), 93-108. https://10.1590/s1981-81222014000100007.

Santos, M. J. T. (2014). Aproveitamento de resíduos da indústria de óleos vegetais produzidos na Amazônia. Dissertação de mestrado. Universidade Federal do Pará. Instituto de Tecnologia. Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos.

Sarquis, I. R.; Sarquis, R. S. F. R.; Marinho, V. H. S.; Neves, F. B.; Araújo, I. F.; Damasceno, L. F.; Ferreira, R. M. A.; Souto, R. N. P.; Carvalho, J. C.T. & Ferreira, I. M. (2020). Carapa guianensis Aubl. (Meliaceae) oil associated with silk fibroin, as alternative to traditional surfactants, and active against larvae of the vector Aedes aegypti. Industrial Crops & Products, 157, 112931. https://doi.org/10.1016/j.indcrop.2020.112931.

Senhorini, G. A.; Zawadzki, S. F.; Farago, P. V.; Zanin, S. M. W. & Marques, F. A. (2012). Microparticles of poly(hydroxybutyrate-co-hydroxyvalerate) loaded with andiroba oil: Preparation and characterization. Materials Science and Engineering C, 32, 1121-1126. https://dx.doi.org/10.1016/ j.msec.2012.02.027.

Sharif, K. M.; Rahman, M. M.; Azmir, J.; Mohamed, A.; Jahurul, M. H. A.; Sahena, F. & Zaidul, I. S. M. (2014). Experimental design of supercritical fluid extraction – A review. Journal of Food Engineering, 124, 105-116. https://doi.org/10.1016/j.jfoodeng.2013.10.003.

Sharmin, E.; Zafar, F.; Akram, D.; Alam, M. & Ahmad, S. (2015). Recent advances in vegetable oils based environment friendly coatings: a review. Ind. Crops Prod., 76, 215-222. https://doi.org/10.1016/j.indcrop.2015.06.022.

Silva, B. J. M.; Hage, A. A. P.; Silva, E. O. & Rodrigues, A. P. D. (2018). Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: a review. Journal of Integrative Medicine, 16, 211-222. https://dx.doi.org/ 10.1016 / j.joim.2018.04.004.

Silva, J. A. P.; Cardoso, N. S. M. & Petzhold, C. L. (2018). Enzymatic synthesis of andiroba oil based polyol for the production of flexible polyurethane foams. Industrial Crops & Products, 113, 55-63. https://doi.org/10.1016/j.indcrop.2018.01.020.

Silva, J. J. M. & Rogez, H. (2013). Avaliação da estabilidade oxidativa do óleo bruto de açaí (Euterpe oleracea) na presença de compostos fenólicos puros ou de extratos vegetais amazônicos. Química Nova, 36 (3), 400-406. https://doi.org/10.1590/S0100-40422013000300009.

Silva, R. P. F. F., Rocha-Santos, T. A. P. & Duarte, A. C. (2016). Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analytical Chemistry, 76, 40-51. https://doi.org/10.1016/j.trac.2015.11.013.

Solaesa, Á. G.; Sanz, M. T.; Falkeborg, M.; Beltrán, S., & Guo, Z. (2016). Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chem., 190, 960-967. http://dx.doi.org/10.1016/j.foodchem.2015.06.061.

Sousa, R. L.; Almeida, B. B.; Silva, R. P.; Albuquerque, L. C. S. & Cordeiro, Y. E. M. (2019). Óleo de andiroba: extração, comercialização e usos tradicionais na comunidade Mamangal, Iguarapé-mirim, Pará. Biodiversidade, 10 (1), 68-81. https://periodicoscientificos.ufmt.br/ojs/index.php/biodiversidade/article/view

Xiong, J.; Matta, F. V.; Grace, M.; Lila, M. A.; Ward, N. I.; Sotelo, M. F. & Esposito, D. (2020). Phenolic content, anti-inflammatory properties, and dermal wound repair properties of industrially processed and non-processed acai from the Brazilian Amazon. Food Function, 11 (6), 4903-4914. https://doi.org/ 10.1039/c9fo03109j.

Yamaguchi, K. K. L.; Pereira, L. F. R.; Lamarão, C. V.; Lima, E. S. & Veiga-Junior, V. F. (2015). Amazon acai chemistry and biological activities: a review. Food Chemistry, 179, 137-151. https://doi.org/10.1016/j.foodchem.2015.01.055.

Yara-Varón, E.; Li, Y.; Balcells, M.; Canela-Garayoa, R.; Fabiano-Tixier, A. S. & Chemat, F. (2017). Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules, 22 (9), 1474, 1-24. https://dx.doi.org/10.3390/molecules22091474.

Yusoff, M. M.; Gordon, M. H. & Niranjan, K. (2015). Aqueous enzyme assisted oil extraction from oilseeds and emulsion de-emulsifying methods: A review. Trends in Food Science & Technology, 41 (1), 60-82. https://doi.org/10.1016/j.tifs.2014.09.003.

Publicado

18/09/2021

Cómo citar

LIRA, G. B.; LOPES, A. S. da C.; NASCIMENTO, F. C. de A.; CONCEIÇÃO, G. dos S.; BRASIL, D. do S. B. . Procesos de extracción y usos industriales de los aceites de andiroba y açaí: una revisión. Research, Society and Development, [S. l.], v. 10, n. 12, p. e229101220227, 2021. DOI: 10.33448/rsd-v10i12.20227. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20227. Acesso em: 27 jul. 2024.

Número

Sección

Revisiones