Coeficiente de pandeo local para la sección completa de un perfil en U reforzado de placa delgada con mesa superior inclinada

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i12.20254

Palabras clave:

Perfiles conformados en frío; Perfil de placa delgada; Coeficiente de pandeo local; Método de sección efectiva.

Resumen

Este trabajo presenta un estudio de perfiles conformados en frío no estandarizados por estándar, con tipología U reforzado y mesa superior inclinada a 30°. El objetivo de este trabajo es determinar una ecuación para el coeficiente de pandeo local (kl) para aplicar el Método de Sección Efectiva (MSE) propuesto por la norma brasileña. Los perfiles se analizan para determinar el esfuerzo de compresión axial y el esfuerzo de flexión simple. Los análisis se realizaron utilizando el software GBTUL. Para el estudio paramétrico se desarrollaron 95 perfiles con diferentes variaciones geométricas. A partir de las curvas de firma de cada análisis, se obtienen los respectivos valores de carga axial para pandeo local y momento flector asociado con pandeo local. Utilizando las prescripciones normativas brasileñas y los resultados obtenidos, fue posible determinar el valor de kl para cada uno de los perfiles analizados. Así, de acuerdo con el Método de Sección Efectiva presentado por la norma, se propusieron dos ecuaciones para determinar el coeficiente de pandeo local (kl), una para la compresión centrada y otra para la flexión simple alrededor del eje de mayor inercia. Las ecuaciones resultaron adecuadas para ser utilizadas en el Método de Sección Efectiva para el tipo de perfil presentado, U reforzado con una mesa superior inclinada a 30°.

Citas

ABNT NBR 14762. (2010). Dimensionamento de Estruturas de Aço constituídas por Perfis Formados a Frio (Associação Brasileira de Normas Técnicas (ed.)).

ABNT NBR 6355. (2003). Perfis estruturais de aço formados a frio - Padronização.

AISI. (2003). American Iron and Steel Institute, AISI Manual Cold-Formed Steel Design 2002 Edition (2002 Editi). AISI-Specifications for the Design of Cold-Formed Steel Structural Members.

Batista, E. de M. (2010). Effective section method: A general direct method for the design of steel cold-formed members under local–global buckling interaction. Thin-Walled Structures, 48(4–5), 345–356. https://doi.org/10.1016/j.tws.2009.11.003

Bebiano, R., Silvestre, N., & Camotim, D. (2021). Generalised Beam Theory Research Group at Lisbon (P. Instituto Superior Técnico, University of Lisbon (ed.)).

Bruneau, L. A., Pham, C. H., & Hancock, G. J. (2014). Experimental study of longitudinally stiffened web channels subjected predominantly to shear. 22nd International Specialty Conference on Recent Research and Developments in Cold-Formed Steel Design and Construction, 329–343.

Campos, A. I. de, Batista, E. de M., & Franco, J. M. S. (2019). STABILITY AND STRENGTH OF COLD-FORMED STEEL COLUMNS WITH INTERMEDIATE STIFFENERS. Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Carvalho, P. R. M. de, Grigoletti, G., & Barbosa, G. D. (2018). Curso básico de perfis de aço formados a frio (3ed.).

Davies, J. M., Leach, P., & Heinz, D. (1994). Second-order generalised beam theory. Journal of Constructional Steel Research, 31(2–3), 221–241. https://doi.org/10.1016/0143-974X(94)90011-6

Depolli, I. C. (2018). Dimensionamento à falha distorcional via método da resistência direta de vigas de aço em perfil formado a frio sob flexão nãouniforme. Universidade Federal do Rio de Janeiro.

Garcia, R. A. S. (2015). Behaviour and DSM desing of cold-formed steel web/flange stiffened lipped channel columns experiencing distortional failure. COOPE UFRJ, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Rio de Janeiro.

Lazzari, J. A. de, & Batista, E. de M. (2021). Finite strip method computer application for buckling analysis of thin-walled structures with arbitrary cross-sections. REM - International Engineering Journal, 74(3), 337–344. https://doi.org/10.1590/0370-44672020740065

Matsubara, Gustavo Y., Batista, E. de M., & Salles, G. C. (2019). Lipped channel cold-formed steel columns under local-distortional buckling mode interaction. Thin-Walled Structures, 137, 251–270. https://doi.org/10.1016/j.tws.2018.12.041

Matsubara, Gustavo Yoshio. (2018). Análise da interação entre modos de flambagem local e distorcional em perfil de aço formados a frio com seção U enrijecido sob compressão axial. Universidade Federal do Rio de Janeiro.

Nunes, R. D. (2016). Sobre o dimensionamento via MRD de colunas de aço em PFF com seção Ue sob modo de falha distorcional e temperaturas elevadas. COPPE/UFRJ.

Paixão, J. F. M. (2018). Dimensionamento via método da resistência direta de colunas em aço inoxidável de parede fina sob falha distorcional. Universidade Federal do Rio de Janeiro.

Schafer, B. W. (1997). Cold-formed steel behavior and design: analytical and numerical modeling of elements and members with longitudinal stiffeners. Cornell University, Ithaca, New York.

Schafer, B. W., & Peköz, T. (1998). Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions. Fourteenth International Specialty Conference on Cold-Formed Steel Structures.

Schardt, R. (1994). Generalized beam theory—an adequate method for coupled stability problems. Thin-Walled Structures, 19, 161–180.

Silva, E. L. (2014). Estruturas compostas por perfis formados a frio –Dimensionamento pelo método das larguras efetivas e aplicação conforme ABNT NBR 14762:2010 e ABNT NBR6355:2012 (Série Manual de Construção em Aço (ed.)).

Yu, W., & LaBoube, R. A. (1924). Cold-formed steel design (4th ed.).

Ziemian, R. D. (2010). Guide to stability design criteria for metal structures (John Wiley & Sons (ed.)).

Publicado

14/09/2021

Cómo citar

ROQUETE, L.; OLIVEIRA, M. M. de; COSTA, F. N. da S.; MARINHO, L. V.; SARMANHO, A. M. C. Coeficiente de pandeo local para la sección completa de un perfil en U reforzado de placa delgada con mesa superior inclinada. Research, Society and Development, [S. l.], v. 10, n. 12, p. e92101220254, 2021. DOI: 10.33448/rsd-v10i12.20254. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20254. Acesso em: 17 jul. 2024.

Número

Sección

Ingenierías