Toxicidad y possible interacción celular del Óxido de Grafeno Reducido con Raphidoceles subcapitata: Análisis ultrastructural

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i15.20377

Palabras clave:

Óxido de grafeno reducido (rGO); Raphidocelis subcapitata; TEM; Ecotoxicidad.

Resumen

El óxido de grafeno reducido (rGO) es un nanomaterial formado por carbono, presentado como un derivado del óxido de grafeno, y por sus propiedades se utiliza en áreas como la microelectrónica, la mecánica y la biomedicina. A pesar de un gran número de pruebas realizadas con este nanomaterial, aún no existe un consenso sobre su toxicidad, cuando se encuentra en el medio ambiente. El medio acuático suele ser el destino final de esos compuestos y, por esta razón, las algas verdes se utilizan a menudo como bioindicador. Este estudio tuvo como objetivo determinar la ecotoxicidad y las posibles interacciones de la nanopartícula rGO con la célula de alga verde de Raphidocelis subcapitata. Los cambios estructurales en las algas, expuestas a diferentes concentraciones de rGO, se analizaron mediante microscopía electrónica de transmisión (TEM) y espectroscopía Raman, se evaluó la toxicidad midiendo la inhibición de la biomasa algal. Los resultados indican que no hubo efecto tóxico en el organismo estudiado, excepto en la concentración más alta (100 mg.L -1). El análisis TEM demostró una interacción de las nanopartículas con la célula de las algas, mediante la observación de la internalización de las nanopartículas, así como por la deposición de rGO en la membrana celular. A pesar de la ausencia de toxicidad a bajas concentraciones, los organismos mostraron sensibilidad a la presencia de rGO. Estos resultados contribuyen a la literatura en el esclarecimiento del comportamiento de las nanopartículas a base de carbono en el medio acuático y pueden permitir un mejor cuidado de la producción y liberación de esas nanopartículas en el medio ambiente.

Citas

Ahmed, F., & Rodrigues, D. F. (2013). Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. - Journal of hazardous materials. 256, 33–39.

Amengual-Morro, C., Niell, C. G. M., & Martínez-Taberner, A. (2012). Phytoplankton as bioindicator for waste stabilization ponds. - Journal of Environmental Management. 95, S71-S76.

Andrade, L. R., Brito, A. S., Melero, A. M. G. S., Zanin, H., Ceragioli, H. J., Baranauskas, V., Cunha, K. S., & Irazusta, S. P. (2014). Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test. - Ecotoxicology and Environmental Safety, 99, 92-97

Andreeva, A., & Velitchkova, M. (2014). Resonance Raman Studies of Carotenoid Molecules Within Photosystem I Particles. - Biotechnology & Biotechnological Equipment, 23(sup1), 488–492.

Bacchetta, R., Santo, N., Valenti, I., Maggioni, D., Longhi, M., & Tremolada, P. (2018). Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist? Nanotoxicology. 12(3), 201-223.

Begum, P., Ikhtiari, R., Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. - Carbon. 49(12), 3907–3919.

Camargos, J. S. F., Semmer, A. O., & Silva, S. N, (2017). Características e aplicações do grafeno e do óxido de grafeno e as principais rotas para síntese.- The Journal of Engineering and Exact Sciences, 8 (3), 1118-1130.

Chatterjee, N., Eom, H. J., Choi, J. (2014). A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials. 35, 1109–27.

Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. – Carbon, 64, 225-229.

Coll, C., Notter, D., Gottschalk, F., Sun, T., Som, C., & Nowack, B. (2016). Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). - Nanotoxicology10(4), 36-44.

Costa, C. R., Olivi, P, Botta, C. M. R., & Espindola, E L. G., (2008). Toxicity in aquatic environments: discussion and evaluation methods. - Quím. Nova, 31 (7), 1820-1830.

De Paula, R. F. O., Rosa, I. A., Gafanhão, I. F. M., Fachi, J. L., Melero, A. M. G., Roque, A. O., Boldrini, V. O., Ferreira, L. A. B., Irazusta, S. P., Ceragioli, H. J., & De Oliveira, E. C. (2020). Reduced graphene oxide, but not carbon nanotubes, slows murine melanoma after thermal ablation using LED light in B16F10 lineage cells. - Nanomedicine-Nanotechnology Biology and Medicine, 29, 102231.

Debashish, M., Soma, P., Sanchit, S., & Nilanjan, D., (2019). Carbon nanotubes: Evaluation of toxicity at biointerfaces. - Journal of Pharmaceutical Analysis 9 (5), 293-300. 230.

Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Academic press; 1996.

Farias, D. R., Hurd, C. L., Eriksen, R. S., & Macleod, C. K., (2018). Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments. - Marine Pollution Bulletin. 128, 175-184.

Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. - Nature Nanotechnology, 8(4), 235–246.

Gall, A., Pascal, A. A., & Robert, B. (2015). Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing.- Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(1), 12–18.

Geim, A. K. (2009). Graphene: status and prospects. - Science. 324(5934), 1530–1534.

Georgakilas, V., Tiwari, J. N., Kemp, C. K., Perman, J. A., Bourlinos, A. B., Kim, K. S., & Zboril, R., (2016). Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. - Chemical Reviews, 116 (9), 5464–5519.

Gomes, A. L. S. G., Balsamo, P. J., Sprogis, A., Ceragioli, H. J., Silva, T. N., Oliveira, E. C., Cacuro, T. A., & Irazusta, S. P., (2018). Avaliação Toxicológica de Nanomaterial de Óxido de Grafeno Reduzido em Algas Unicelulares. - Boletim Técnico da Fatec São Paulo, 45, 11-15.

Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions.- Environ. Sci. Technol. 43(24), 9216-9222.

Guiney, L. M., Wang, X., Xia, T., Nel, A. E., & Hersam, M. C. (2018).Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. - ACS Nano 12, 6360–6377.

Irazusta, S. P., Oliveira, E. C., Ceragiolli, H. J., Souza, B. F. S., Mendonça, M. C. P., Soares, E. S., Azevedo Junior, R., Cruz-Hofling, M. A., & Cruz, Z. M. A. (2018). Stress oxidativo e alterações enzimáticas induzidas por nanotubos de carbono de paredes múltiplas (MWCNTs) funcionalizados com polietileno glicol no tecido hepático de camundongos. - Revinter, 11 (1), 05-25.

Janssen, C. R., & Heijerick, D. G. (2003). Algal toxicity tests for environmental risk assessments of metals. - Reviews of Environmental Contamination and Toxicology, 178, 23-52.

Jehlička, J., Culka, A., Mana, L., & Oren, A. (2019)a. Comparison of Miniaturized Raman Spectrometers for Discrimination of Carotenoids of Halophilic Microorganisms. - Frontiers in Microbiology, 10, 1155.

Jehlička, J., Edwards, H. G. M., Osterrothová, K., Novotná, J., Nedbalová, L., Kopecký, J., Němec, I., & Oren, A. (2019)b. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. - Phil. Trans. R. Soc. A 372, 20140199.

Kim, H. M. ; Kim, S. G. ; Lee, H. S. (2017) Dispersions of partially reduced graphene oxide in various organic solvents and polymers. - Carbon Lett. , 23, 55–62

Kraegeloh, A., Suarez-Merino, B., Sluijters, T., Micheletti, C. (2018). Implementation of Safe-by-Design for Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach. – Nanomaterials 8, 239.

Lalwani, G., & Sitharaman, B. (2013). Multifunctional Fullerene- and Metallofullerene-based Nanobiomaterials.- Nano LIFE, 3(3), 1342003-1–1342003-22.

Lalwani, G., Xing, W., & Sitharaman, B. (2014). Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase.- Journal of Materials Chemistry B. 2(37), 6354–6362

Lalwani, G., D’Agati, M., Khan, A. M., & Sitharaman, B. (2016). Toxicology of Graphene-Based Nanomaterials. - Adv Drug Deliv Rev. 105(Pt B), 109–144

Lam, C. W., James, J. T., McCluskey, R., Arepalli, S., & Hunter, R. L. (2006). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks.- Crit Rev Toxicol. 36 (3), 189-217.

Lee, A. Y., Yang, K., Anh, N. D., Park, C., Lee, S. M., Lee, T. G., & Jeong, M. S. (2021). Raman study of D* band in graphene oxide and its correlation with reduction. Applied Surface Science, 536, 147990.

Levin, L., Jensen, P., & Kreimer, P. (2016) Does Size Matter? The Multipolar International Landscape of Nanoscience. - PLoS ONE 11(12): e0166914.

Markovic, M., Andelkovic, I., Shuster, J., Janik, L., Kumar, L., Losic, D., & McLaughlin, M.J. (2020). Addressing challenges in providing a reliable ecotoxicology data for graphene-oxide (GO) using an algae. (Raphidocelis subcapitata), and the trophic transfer consequence of GO-algae aggregates. - Chemosphere 245, 125640

Mendonça, M., Soares, E. S., de Jesus, M. B., Ceragioli, H. J., Irazusta, S. P., Batista, A. G.,Vinolo, M. A. R., Marostica Junior, M. R., & Cruz‑Höfling, M. A., (2016). Reduced graphene oxide: nanotoxicological profile in rats. Journal of Nanobiotechnology 14 (53), 1-13.

Mullick Chowdhury, S., Dasgupta, S., McElroy, A. E., & Sitharaman, B. (2014). Structural disruption increases toxicity of graphene nanoribbons. - Journal of Applied Toxicology. 34(11), 1235–1246.

Nowack, B., David, R. M., Fissan, H., Morris, H., Shatkin, J.A., Stintz, M., Zepp, R., & Brouwer, D., (2013). Potential release scenarios for carbon nanotubes used in composites.- Environ Int.;59, 1–11.

Oberdorster, G., (2010). Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. - Journal of Internal Medicine, 267, 89-105.

Ou, L., Song, B., Liang, H., Liu, J., Feng, X., Deng, B., Sun, T, & Shao, L. (2016). Toxicity of graphene-family nanoparticles:a general review of the origins and mechanisms - Particle and Fibre Toxicology, 13, 57.

Ozkaleli, M., & Erden, A. (2018). Biotoxicity of TiO2 Nanoparticles on Raphidocelis subcapitata Microalgae Exemplified by Membrane Deformation. - International Journal of Environmental Research and Public Health, 15 (416), 1-12.

Parab, N. D. T., Tomar, V. (2012) Raman spectroscopy of algae: A review. - Journal of Nanomedicine and Nanotechnology, 3(2), 2-7.

Park, S., An, J., Jung, I., Piner, R. D., An, S. J., Li, X., Velamakanni, V., & Ruoff, S. R. (2009). Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. - Nano Letter 9 (4), 1593-1597.

Paschoalino, M. P., Marcone, G. P. S., & Jardim, W. F. (2010). Nanomaterials and the environment. - Quím. Nova, 33 (2), 421-430.

Petersen, E. J., & Henry, T. B., 2012. Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: Review. - Environmental Toxicology and Chemistry,31 (1), 60–72.

Quyen Chau, N.D., Ménard-Moyon, C., Kostarelos, K., & Bianco, A. (2015). Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting. - Biochem. Biophys. Res. Commun. 468(3),:454-62.

Reynolds, A., Giltrap, D. M., & Chambers, P. G. (2021). Acute growth inhibition & toxicity analysis of nano-polystyrene spheres on Raphidocelis subcapitata.- - Ecotoxicology and Environmental Safety, 207, 111153.

Rezayi, M., Mahmoodi P., Langari, H., Behnam, B., & Sahebkar, A. (2019). Conjugates of curcumin with graphene or carbon nanotubes: a review on biomedical applications. -Curr. Med Chem. 13, 5-21.

Shen, H., Zhang, L., Liu, M., & Zhang, Z. (2012). Biomedical applications of graphene.- Theranostics. 2(3), 283–94.

Sørensen, S. N., Engelbrekt, C., Lützhøft, H-C. H., Jiménez-Lamana, J., Noori, J. S., Giron Delgado, C., Baun, A. (2016). Algal toxicity of platinum nanoparticles - Implications of NP aggregation, dissolution and shading. - In SETAC Europe 26th Annual Meeting - abstract book (29-29). Nantes, France: SETAC Europe.

Sousa, C. A., Soares, H. M. V. M., & Soares, E. V. (2019). Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms. - Aquat Toxicol. 214:105265.

Toma, H. E. (2005). Research organization in Brazil: from chemistry to Nanotechnology. Quím. Nova. 28, S48-S51.

Wängberg, S. A. & Blanck, H. (1988). Multivariate patterns of algal sensitivity to chemicals in relation to phylogeny. - Ecotoxicol Environ Saf. 16(1), 72-82.

Wu, J.-B., Lin, M.-L., Cong, X., Liu, H.-N., & Tan, P.-H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. -

Chemical Society Reviews, 47(5), 1822–1873.

Yang, Y., Asiri, A. M., Tang, Z., Du, D., & Lin, Y. (2013). Graphene based materials for biomedical applications. Materials Today, 16 (10), 365-373.

Zhao, Y., Liu, Y., Zhang, X., & Liao, W. (2021). Environmental transformation of graphene oxide in the aquatic environment- Chemosphere, 262, 127885

Publicado

24/11/2021

Cómo citar

IRAZUSTA, S. P.; FERREIRA, M. S.; BALSAMO, P. J.; ALMEIDA, L. S. de; CERAGIOLI, H. J. Toxicidad y possible interacción celular del Óxido de Grafeno Reducido con Raphidoceles subcapitata: Análisis ultrastructural. Research, Society and Development, [S. l.], v. 10, n. 15, p. e459101520377, 2021. DOI: 10.33448/rsd-v10i15.20377. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20377. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud