Toxicidade e possível interação celular do Óxido de Grafeno Reduzido com Raphidoceles subcapitata: Análise ultraestrutural

Autores

DOI:

https://doi.org/10.33448/rsd-v10i15.20377

Palavras-chave:

Raphidocelis subcapitata; TEM; Óxido de grafeno reduzido (rGO); Ecotoxicidade.

Resumo

O óxido de grafeno reduzido (rGO) é um nanomaterial formado por carbono, apresentado como um derivado do óxido de grafeno e, devido às suas propriedades, é utilizado em áreas como microeletrônica, mecânica e biomedicina. Apesar da grande quantidade de testes realizados com esse nanomaterial, ainda não há consenso sobre sua toxicidade, quando no meio ambiente. O meio aquático costuma ser o destino final desses compostos e, por isso, as algas verdes costumam ser utilizadas como bioindicador. Este estudo teve como objetivo determinar a ecotoxicidade e possíveis interações da nanopartícula de rGO com a célula de algas verdes de Raphidocelis subcapitata. As alterações estruturais nas algas, expostas a diferentes concentrações a rGO, foram analisadas através de microscopia eletrônica de transmissão (TEM) e espectroscopia Raman, a toxicidade foi avaliada por meio da medida de inibição da biomassa algal. Os resultados indicam que não houve efeito tóxico no organismo estudado, exceto na maior concentração (100 mg.L-1). A análise de TEM demonstrou uma interação das nanopartículas com a célula algal, pela observação da internalização das nanopartículas, bem como pela deposição de rGO na membrana celular. Apesar da ausência de toxicidade em baixas concentrações, os organismos mostraram sensibilidade à presença do rGO. Esses resultados contribuem com a literatura no esclarecimento do comportamento das nanopartículas à base de carbono no ambiente aquático e podem permitir um melhor cuidado com a produção e liberação dessas nanopartículas no meio ambiente.

Referências

Ahmed, F., & Rodrigues, D. F. (2013). Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. - Journal of hazardous materials. 256, 33–39.

Amengual-Morro, C., Niell, C. G. M., & Martínez-Taberner, A. (2012). Phytoplankton as bioindicator for waste stabilization ponds. - Journal of Environmental Management. 95, S71-S76.

Andrade, L. R., Brito, A. S., Melero, A. M. G. S., Zanin, H., Ceragioli, H. J., Baranauskas, V., Cunha, K. S., & Irazusta, S. P. (2014). Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test. - Ecotoxicology and Environmental Safety, 99, 92-97

Andreeva, A., & Velitchkova, M. (2014). Resonance Raman Studies of Carotenoid Molecules Within Photosystem I Particles. - Biotechnology & Biotechnological Equipment, 23(sup1), 488–492.

Bacchetta, R., Santo, N., Valenti, I., Maggioni, D., Longhi, M., & Tremolada, P. (2018). Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist? Nanotoxicology. 12(3), 201-223.

Begum, P., Ikhtiari, R., Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. - Carbon. 49(12), 3907–3919.

Camargos, J. S. F., Semmer, A. O., & Silva, S. N, (2017). Características e aplicações do grafeno e do óxido de grafeno e as principais rotas para síntese.- The Journal of Engineering and Exact Sciences, 8 (3), 1118-1130.

Chatterjee, N., Eom, H. J., Choi, J. (2014). A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials. 35, 1109–27.

Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. – Carbon, 64, 225-229.

Coll, C., Notter, D., Gottschalk, F., Sun, T., Som, C., & Nowack, B. (2016). Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). - Nanotoxicology10(4), 36-44.

Costa, C. R., Olivi, P, Botta, C. M. R., & Espindola, E L. G., (2008). Toxicity in aquatic environments: discussion and evaluation methods. - Quím. Nova, 31 (7), 1820-1830.

De Paula, R. F. O., Rosa, I. A., Gafanhão, I. F. M., Fachi, J. L., Melero, A. M. G., Roque, A. O., Boldrini, V. O., Ferreira, L. A. B., Irazusta, S. P., Ceragioli, H. J., & De Oliveira, E. C. (2020). Reduced graphene oxide, but not carbon nanotubes, slows murine melanoma after thermal ablation using LED light in B16F10 lineage cells. - Nanomedicine-Nanotechnology Biology and Medicine, 29, 102231.

Debashish, M., Soma, P., Sanchit, S., & Nilanjan, D., (2019). Carbon nanotubes: Evaluation of toxicity at biointerfaces. - Journal of Pharmaceutical Analysis 9 (5), 293-300. 230.

Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Academic press; 1996.

Farias, D. R., Hurd, C. L., Eriksen, R. S., & Macleod, C. K., (2018). Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments. - Marine Pollution Bulletin. 128, 175-184.

Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. - Nature Nanotechnology, 8(4), 235–246.

Gall, A., Pascal, A. A., & Robert, B. (2015). Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing.- Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(1), 12–18.

Geim, A. K. (2009). Graphene: status and prospects. - Science. 324(5934), 1530–1534.

Georgakilas, V., Tiwari, J. N., Kemp, C. K., Perman, J. A., Bourlinos, A. B., Kim, K. S., & Zboril, R., (2016). Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. - Chemical Reviews, 116 (9), 5464–5519.

Gomes, A. L. S. G., Balsamo, P. J., Sprogis, A., Ceragioli, H. J., Silva, T. N., Oliveira, E. C., Cacuro, T. A., & Irazusta, S. P., (2018). Avaliação Toxicológica de Nanomaterial de Óxido de Grafeno Reduzido em Algas Unicelulares. - Boletim Técnico da Fatec São Paulo, 45, 11-15.

Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions.- Environ. Sci. Technol. 43(24), 9216-9222.

Guiney, L. M., Wang, X., Xia, T., Nel, A. E., & Hersam, M. C. (2018).Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. - ACS Nano 12, 6360–6377.

Irazusta, S. P., Oliveira, E. C., Ceragiolli, H. J., Souza, B. F. S., Mendonça, M. C. P., Soares, E. S., Azevedo Junior, R., Cruz-Hofling, M. A., & Cruz, Z. M. A. (2018). Stress oxidativo e alterações enzimáticas induzidas por nanotubos de carbono de paredes múltiplas (MWCNTs) funcionalizados com polietileno glicol no tecido hepático de camundongos. - Revinter, 11 (1), 05-25.

Janssen, C. R., & Heijerick, D. G. (2003). Algal toxicity tests for environmental risk assessments of metals. - Reviews of Environmental Contamination and Toxicology, 178, 23-52.

Jehlička, J., Culka, A., Mana, L., & Oren, A. (2019)a. Comparison of Miniaturized Raman Spectrometers for Discrimination of Carotenoids of Halophilic Microorganisms. - Frontiers in Microbiology, 10, 1155.

Jehlička, J., Edwards, H. G. M., Osterrothová, K., Novotná, J., Nedbalová, L., Kopecký, J., Němec, I., & Oren, A. (2019)b. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. - Phil. Trans. R. Soc. A 372, 20140199.

Kim, H. M. ; Kim, S. G. ; Lee, H. S. (2017) Dispersions of partially reduced graphene oxide in various organic solvents and polymers. - Carbon Lett. , 23, 55–62

Kraegeloh, A., Suarez-Merino, B., Sluijters, T., Micheletti, C. (2018). Implementation of Safe-by-Design for Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach. – Nanomaterials 8, 239.

Lalwani, G., & Sitharaman, B. (2013). Multifunctional Fullerene- and Metallofullerene-based Nanobiomaterials.- Nano LIFE, 3(3), 1342003-1–1342003-22.

Lalwani, G., Xing, W., & Sitharaman, B. (2014). Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase.- Journal of Materials Chemistry B. 2(37), 6354–6362

Lalwani, G., D’Agati, M., Khan, A. M., & Sitharaman, B. (2016). Toxicology of Graphene-Based Nanomaterials. - Adv Drug Deliv Rev. 105(Pt B), 109–144

Lam, C. W., James, J. T., McCluskey, R., Arepalli, S., & Hunter, R. L. (2006). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks.- Crit Rev Toxicol. 36 (3), 189-217.

Lee, A. Y., Yang, K., Anh, N. D., Park, C., Lee, S. M., Lee, T. G., & Jeong, M. S. (2021). Raman study of D* band in graphene oxide and its correlation with reduction. Applied Surface Science, 536, 147990.

Levin, L., Jensen, P., & Kreimer, P. (2016) Does Size Matter? The Multipolar International Landscape of Nanoscience. - PLoS ONE 11(12): e0166914.

Markovic, M., Andelkovic, I., Shuster, J., Janik, L., Kumar, L., Losic, D., & McLaughlin, M.J. (2020). Addressing challenges in providing a reliable ecotoxicology data for graphene-oxide (GO) using an algae. (Raphidocelis subcapitata), and the trophic transfer consequence of GO-algae aggregates. - Chemosphere 245, 125640

Mendonça, M., Soares, E. S., de Jesus, M. B., Ceragioli, H. J., Irazusta, S. P., Batista, A. G.,Vinolo, M. A. R., Marostica Junior, M. R., & Cruz‑Höfling, M. A., (2016). Reduced graphene oxide: nanotoxicological profile in rats. Journal of Nanobiotechnology 14 (53), 1-13.

Mullick Chowdhury, S., Dasgupta, S., McElroy, A. E., & Sitharaman, B. (2014). Structural disruption increases toxicity of graphene nanoribbons. - Journal of Applied Toxicology. 34(11), 1235–1246.

Nowack, B., David, R. M., Fissan, H., Morris, H., Shatkin, J.A., Stintz, M., Zepp, R., & Brouwer, D., (2013). Potential release scenarios for carbon nanotubes used in composites.- Environ Int.;59, 1–11.

Oberdorster, G., (2010). Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. - Journal of Internal Medicine, 267, 89-105.

Ou, L., Song, B., Liang, H., Liu, J., Feng, X., Deng, B., Sun, T, & Shao, L. (2016). Toxicity of graphene-family nanoparticles:a general review of the origins and mechanisms - Particle and Fibre Toxicology, 13, 57.

Ozkaleli, M., & Erden, A. (2018). Biotoxicity of TiO2 Nanoparticles on Raphidocelis subcapitata Microalgae Exemplified by Membrane Deformation. - International Journal of Environmental Research and Public Health, 15 (416), 1-12.

Parab, N. D. T., Tomar, V. (2012) Raman spectroscopy of algae: A review. - Journal of Nanomedicine and Nanotechnology, 3(2), 2-7.

Park, S., An, J., Jung, I., Piner, R. D., An, S. J., Li, X., Velamakanni, V., & Ruoff, S. R. (2009). Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. - Nano Letter 9 (4), 1593-1597.

Paschoalino, M. P., Marcone, G. P. S., & Jardim, W. F. (2010). Nanomaterials and the environment. - Quím. Nova, 33 (2), 421-430.

Petersen, E. J., & Henry, T. B., 2012. Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: Review. - Environmental Toxicology and Chemistry,31 (1), 60–72.

Quyen Chau, N.D., Ménard-Moyon, C., Kostarelos, K., & Bianco, A. (2015). Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting. - Biochem. Biophys. Res. Commun. 468(3),:454-62.

Reynolds, A., Giltrap, D. M., & Chambers, P. G. (2021). Acute growth inhibition & toxicity analysis of nano-polystyrene spheres on Raphidocelis subcapitata.- - Ecotoxicology and Environmental Safety, 207, 111153.

Rezayi, M., Mahmoodi P., Langari, H., Behnam, B., & Sahebkar, A. (2019). Conjugates of curcumin with graphene or carbon nanotubes: a review on biomedical applications. -Curr. Med Chem. 13, 5-21.

Shen, H., Zhang, L., Liu, M., & Zhang, Z. (2012). Biomedical applications of graphene.- Theranostics. 2(3), 283–94.

Sørensen, S. N., Engelbrekt, C., Lützhøft, H-C. H., Jiménez-Lamana, J., Noori, J. S., Giron Delgado, C., Baun, A. (2016). Algal toxicity of platinum nanoparticles - Implications of NP aggregation, dissolution and shading. - In SETAC Europe 26th Annual Meeting - abstract book (29-29). Nantes, France: SETAC Europe.

Sousa, C. A., Soares, H. M. V. M., & Soares, E. V. (2019). Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms. - Aquat Toxicol. 214:105265.

Toma, H. E. (2005). Research organization in Brazil: from chemistry to Nanotechnology. Quím. Nova. 28, S48-S51.

Wängberg, S. A. & Blanck, H. (1988). Multivariate patterns of algal sensitivity to chemicals in relation to phylogeny. - Ecotoxicol Environ Saf. 16(1), 72-82.

Wu, J.-B., Lin, M.-L., Cong, X., Liu, H.-N., & Tan, P.-H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. -

Chemical Society Reviews, 47(5), 1822–1873.

Yang, Y., Asiri, A. M., Tang, Z., Du, D., & Lin, Y. (2013). Graphene based materials for biomedical applications. Materials Today, 16 (10), 365-373.

Zhao, Y., Liu, Y., Zhang, X., & Liao, W. (2021). Environmental transformation of graphene oxide in the aquatic environment- Chemosphere, 262, 127885

Downloads

Publicado

24/11/2021

Como Citar

IRAZUSTA, S. P.; FERREIRA, M. S.; BALSAMO, P. J.; ALMEIDA, L. S. de; CERAGIOLI, H. J. Toxicidade e possível interação celular do Óxido de Grafeno Reduzido com Raphidoceles subcapitata: Análise ultraestrutural . Research, Society and Development, [S. l.], v. 10, n. 15, p. e459101520377, 2021. DOI: 10.33448/rsd-v10i15.20377. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20377. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências da Saúde