Cultivo de Chlorella sorokiniana en suero de queso para la producción de β-galactosidasa
DOI:
https://doi.org/10.33448/rsd-v10i12.20727Palabras clave:
Proceso biotecnológico; Microalgas; Condiciones de cultivo; Biomasa.Resumen
Los procesos biotecnológicos con microalgas con el objetivo de lograr altos rendimientos de biomasa deben elegir los nutrientes y parámetros fisicoquímicos adecuados, teniendo en cuenta las características específicas de cada especie para determinar las necesidades básicas para su crecimiento. En el presente estudio, se optimizó la mejor condición de crecimiento de Chlorella sorokiniana IPR 7104 para alcanzar la producción máxima de beta-galactosidasa. La concentración de suero de queso (%), la temperatura (˚C) y el pH fueron factores investigados y se implementó un enfoque Box-Behnken Design (BBD) utilizando el software Statistica 7.0. Observamos que la condición de cultivo de Chlorella sorokiniana IPR 7104 fue la heterotrófica, la cual mostró la mayor actividad enzimática, consecuentemente un menor contenido de lactosa residual. En condiciones heterótrofas (sin luz), la actividad de la β-galactosidasa aumentó linealmente hasta el octavo día. La producción de biomasa creció linealmente el día 12. Las microalgas consumieron el 89,6% de lactosa en 3 días, mostrando una alta capacidad para metabolizar este disacárido, a través de la síntesis de β-galactosidasa. La producción máxima de β-galactosidasa por Chlorella sorokiniana IPR 7104, en condiciones heterótrofas y utilizando suero de queso como fuente de carbono, se obtiene utilizando las siguientes condiciones: temperatura 30 ° C, concentración de etanol al 20% y tiempo de 4 min.
Citas
Anisha, G. S. (2017). β-galactosidases. In: Pandey, A.; Negi, S.; Soccol, C.R. Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. Elsevier 17, 395-421. https://doi.org/10.1016/B978-0-444-63662-1.00017-8
Brasil, B. S. A. F., Siqueira, F. G., Salum, T. F. C., Zanette, C. M., & Spier, M. R. (2017). Microalgae and cyanobacteria as enzyme biofactories. Algal Research. 25, 76–89.
Bentahar, J., Doyen, A., Beaulieu, L., & Deschênes, J.S. (2019). Investigation of β-galactosidase production by microalga Tetradesmus obliquus in determined growth conditions. J. Appl. Phycol. 31, 301–308. https://doi.org/10.1007/s10811-018-1550-y
Bekirogullari, M., Figueroa-Torres, G. M., Pittman, J. K., & Theodoropoulos, C. (2020). Models of microalgal cultivation for added-value products - A review. Biotechnology Advances. 44, 07609. https://doi.org/10.1016/j.biotechadv.2020.107609.
Girard, J. M., Roy, M. L., Hafsa, M. B., Gagnon, J., Faucheux, N., Heitz, M., Tremblay, R., & Deschenes, J. S. (2014). Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res. 5, 241–248.
Herold, C., Ishika, T., Nwoba, E.G., Tait, S., Ward, A., & Moheimani, N.R. (2021). Biomass production of marine microalga Tetraselmis suecica using biogas and wastewater as nutrients, Biomass and Bioenergy. 145, 105945. https://doi:10.1016/j.biombioe.2020.105945.
Hui, W., Wenjun, Z., Huimin, S., & Tianzhong, L. (2017). A comparative analysis of biomass and lipid content in five Tribonema sp. strains at autotrophic, heterotrophic and mixotrophic cultivation. Algal Research. 24, 284-289, https://doi.org/10.1016/j.algal.2017.04.020.
Li, S., Zhao, S., Yan, S., Qiu, Y., Song, C., Li, Y., & Kitamura, Y. (2019). Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production–a review. Chinese Journal of Chemical Engineering, 27(12), 2845-2856.
Nickerson, T. A., Vujicic, I. F., & Lin, A.Y. (1975). Colorimetric estimation of lactose and its hydrolytic products. J. Dairy Sci. (Champaign) 59 (3), 386-90.
Patel, A. K., Joun, J. M., Hong, M. E., & Sim, S. J. (2019). Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresource Technology. 282, 245-253.
Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M., & Karube, I. (1995). Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers. Manag. 36 (6), 693–696.
Salati, S., D'Imporzano, G., Menin, B., Veronesi, D., Scaglia, B., Abbruscato, P., Mariani, P., & Adani, F. (2017). Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresource Technology. 230, 82-89. https://doi.org/10.1016/j.biortech.2017.01.030.
Sudhakar, M. P., Kumar, B. R., Mathimani, T., & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. Journal of Cleaner Production, 228.
Suwal, S., Bentahar, J., Marciniak, A., Beaulieu, L., Deschenes, J. S., & Doyen, A. (2019). Evidence of the production of galactooligosaccharide from whey permeate by the microalgae Tetradesmus obliquus. Algal Res. 39, 101470. https://doi.org/10.1016/j.algal.2019.101470
Welter, C., Schwenk, J., Kanani, B., Van Blargan, J., & Belovich, J.M. (2013). Minimal médium for optimal growth and lipid production of the microalgae Scenedesmus dimorphus. Environ. Prog. Sustain. Energy. 32 (4), 937–945.
Xavier, J. R., Ramana, K.V., & Sharma, R. K. (2018). β-galactosidase: Biotechnological applications in food processing. J. Food Biochem. 42, e12564. https://doi.org/10.1111/jfbc.12564
Xiong, W., Li, X. F., Xiang, J. Y., & Wu, Q. Y. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbial-diesel production. Appl. Microbiol. Biotechnol. 78, 29–36.
Yadav, G., Panda, S. P., & Sen, R. (2020). Strategies for the effective solid, liquid and gaseous waste valorization by microalgae: A circular bioeconomy perspective. J. Environ. Chem. Eng., 8 (6), 104518.
Yeh, K. L., Chen, C. Y., & Chang, J. S. (2012). pH-stat photoheterotrophic cultivation of indegenous Chlorella vulgaris ESP-31 for biomass and lipid production using acetic acid as the carbon source. Journal Biochem. Engineering. 64, 1-7.
Zanette, C. M., Mariano, A. B., Yukawa, Y. S., Mendes, I. & Spier, M. R. (2019). Microalgae mixotrophic cultivation for β-galactosidase production. Journal of Applied Phycology. 31, 1597–1606. https://doi.org/10.1007/s10811-018-1720-y
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Maicon Jhonatan Bueno do Amaral Santos; Diva de Souza Andrade; Alessandra Bosso; Mayara Mari Murata; Luiz Rodrigo Ito Morioka; Josemeyre Bonifácio da Silva; Hélio Hiroshi Suguimoto
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.