Gradiente longitudinal en la estructura de ensamblaje de peces de un reservorio de acumulación: Capivari

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i13.21171

Palabras clave:

Influencia abiótica; Zonificación en embalses; Zona fluvial.

Resumen

El presente estudio evaluó la hipótesis de que el conjunto de peces del embalse de la Central Hidroeléctrica Governador Pedro Viriato Parigot de Souza (Capivari) está estructurado longitudinalmente, formando dos o tres zonas diferenciadas. Los peces y las variables abióticas se recolectaron trimestralmente entre enero de 2004 y octubre de 2008 en tres lugares (presa, intermedio y remanso) a lo largo del embalse. En total, se capturaron 38.085 individuos, que se resumieron con escala multidimensional no métrica (NMS) y se compararon longitudinalmente con el procedimiento permutacional de múltiples respuestas (MRPP). También se analizó la ocurrencia de especies distribuidas en cada localidad. A continuación, se extrajeron los gradientes de variación en la estructura del ensamblaje de peces asociados a las variables abióticas bajo la restricción lineal impuesta por ellas, mediante el análisis canónico de correspondencias (ACC). La diferencia entre gradientes puros y restringidos se evaluó mediante la prueba de Mantel. Las pruebas NMS y MRPP mostraron que los gradientes puros de la estructura del ensamblaje de peces se diferenciaron longitudinalmente, siendo el remanso diferente de los demás, con una mayor preferencia de especies por esta ubicación. ACC demostró la influencia de la transparencia del agua, el pH y el oxígeno disuelto, así como el resultado de NMS. Se concluyó que la estructura del ensamble de peces en el embalse Capivari mostró un estándar de zonificación, formando dos zonas diferenciadas en el gradiente longitudinal, donde se encontró una mayor preferencia de especies por la zona fluvial (remanso), influenciada principalmente por su menor transparencia. Valores de agua y niveles más altos de pH y oxígeno disuelto.

Citas

Aarts, B. G. W., Van den Brink, F. W. B. & Nienhuis, P. H. (2004). Habitat loss as the main cause of the slow recovery of fish faunas of regulated rivers in Europe: the transversal floodplain gradient. River Research and Applications, 20: 3-23.

Aarts, B. G. W. & P. H. Nienhuis. 2003. Fish zonation and guilds as the basis for the assessment of ecological integrity of large rivers. Hydrobiologia, 500: 157-178.

Abdel-Tawwab, M., Monier, M. N., Hoseinifar, S. H. & Faggio, C. (2019). Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish physiology and biochemistry, 45(3): 997-1013.

Abelha, M. C. & Goulart E. (2004). Oportunismo trófico de Geophagus brasiliensis (Quoy & Gaimard, 1824) (Osteichthyes, Cichlidae) no reservatório de Capivari, Estado do Paraná, Brasil. Acta Scientiarum: Biological Sciences, Maringá, 26(1): 37-45.

Agostinho, A. A., Pelicice, F. M. & Gomes, L. C. (2008). Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology, 68(4): 1119-1132.

Agostinho, A. A., Julio Jr, H. F. & Borguetti, J. R. (1992). Considerações sobre os impactos do represamento na ictiofauna e medidas para sua atenuação. Um estudo de caso: reservatório de Itaipu. Revista Unimar, Maringá, 14: 89-107.

Agostinho, A. A., Gomes, L. C. & Pelicice, F. M. (2007). Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Maringá, EDUEM, 501p.

Agostinho, A. A., Miranda, L. E., Bini, L. M., Gomes, L. C., Thomaz, S. M. & Suzuki, H. I. (1999). Patterns of colonization in Neotropical reservoirs, and prognoses on again. p. 227-265. In: Tundisi, J. G. & Straskraba, M. (Eds.). Theoretical reservoir ecology and its applications. International Institute of Ecology. São Carlos. The Netherlands Backhuys Publishers, Leiden. Brazilian Academy of Sciences, Rio de Janeiro, 585p.

Angermeier, P. L., Krueger, K. L. & Dolloff, C. A. (2002). Discontinuity in stream-fish distributions: implications for assessing and predicting species occurrence. Predicting species occurrences: issues of accuracy and scale. Island Press, Covelo, California, 519-527 p.

Barili, E., Agostinho, A. A., Gomes, L. C. & Latini, J. D. (2011). The coexistence of fish species in streams: relationships between assemblage attributes and trophic and environmental variables. Environmental Biology of Fishes. 92: 41-52.

Baumgartner, D. (2010). Zonação, variabilidade e inter-relação da fauna de peixes de dois reservatórios do rio Iguaçu, Paraná, Brasil. Tese, Universidade Estadual de Maringá, Maringá, 76p.

Baumgartner, G., Pavanelli, C. S., Baumgartner, D., Bifi, A. G., Debona, T. & Frana, V. A. (2012). Peixes do baixo rio Iguaçu. Eduem, 203p.

Bertora, A., Grosman, F., Sanzano, P., & Rosso, J. J. (2021). Fish assemblage structure in a Neotropical urbanised prairie stream exposed to multiple natural and anthropic factors. Ecology of Freshwater Fish, 00:1–19.

Bueno, G. W., Bureau, D., Skipper-Horton, J. O., Roubach, R., Mattos, F. T. D. & Bernal, F. E. M. (2017). Modelagem matemática para gestão da capacidade de suporte de empreendimentos aquícolas em lagos e reservatórios. Pesquisa Agropecuária Brasileira, 52: 695-706.

Bunn, S. E. & Asthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 4: 492-507.

Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., Čtvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. D., Fiasca, B., Hamilton, P. B., Kubečka, J., Segadelli, S. & Znachor, P. (2020). Características, principais impactos e manejo dos ambientes naturais e artificiais de água doce: consequências para a conservação da biodiversidade. Água, 12 (1), 260.

Crowl, T. A. 1989. Effects of crayfish size, orientation, and movement on the reactive distance of largemouth bass foraging in clear and turbid water. Hydrobiologia, 183(2): 133-140.

Druzian, R. A., Fonseca, J. R. S., Neto, J. C., Debona, T., dos Santos, V. V., da Silva, P. R. L., Maciel, A. L., Orsi, C. H., Fernandes, C., dos Reis, A. N., Fernandes, C. & Baumgartner, G. (2021). Pequena central hidrelétrica afeta a estrutura populacional do lambari do rabo vermelho Psalidodon aff. fasciatus (Cuvier 1819). Research, Society and Development, 10(10), e51101018582-e51101018582.

Dufrêne, M. & P. Legendre. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345-366.

Esteves, F. D. A. (2011). Fundamentos de Limnologia. (3a ed.), Interciência.

Fernando, C. H. & Holcik, J. (1991). Fish in reservoirs. Internationale Revue Der Gesamten Hydrobiologie, 76(2): 149-167.

Frana, V. A. (2011). Gradientes Espaciais no Reservatório de Foz do Areia – Rio Iguaçu. Dissertação, Universidade Estadual do Oeste do Paraná, Toledo, 28p.

Fromm, P. O. (1980). A review of some physiological and toxicological responses on freshwater fish to acid stress. Environmental Biology of Fishes, 5(1): 79-93.

Galat, D. L. & Zweimüller I. (2001). Conserving large-river fishes: in the highway analogy an appropriate paradigm? Jornal of the North American Benthological Society, 20: 266-279.

Graça, W. J. & Pavanelli, C. S. (2007). Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. Maringá: Eduem, 241p.

Henry, R. (1999). Ecologia de reservatórios: estrutura, função e aspectos sociais. FUNDIBIO: FAPESP. 797p.

Herder, F. & Freyhof, J. (2006). Resource partitioning in a tropical stream fish assemblage. Jornal Fish Biology, 69: 571-598.

Hixon, M. A., Palaca, S. W. & Sandin S. A. (2002). Population regulation: historical context and contemporary challenges of open versus closed systems. Ecology, 83: 1490-1508.

Ishikawa, M., Bleninger, T. & Lorke, A. (2021). Hydrodynamics and mixing mechanisms in a subtropical reservoir. Inland Waters, 1-16.

Jackson, D. A., Somers, K. M. & Harvey, H. H. (1992). Null models and fish communities: evidence of nonrandom patterns. American Naturalist, 139: 930-943.

Jackson, D. A., Peres-Neto, P. R. & Olden, J. D. (2001). What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 157-170.

Julio-Junior, H. F., Thomaz, S. M., Agostinho, A. A. & Latini, J. D. (2005). Distribuição e caracterização dos reservatórios. Biocenoses em reservatórios: padrões espaciais e temporais. São Carlos: Rima, 1-16.

Kennard, M. J., Arthington, A. H., Pusey, B. J. & Harch, B. D. (2005). Are alien fish a reliable indicator of river health? Freshwater Biology, 50: 174-193.

Kimmel, B. L. (1990). Reservoir primary productivity. Reservoir limnology-ecological perspectives, 133-199.

Klippel, G., Macêdo, R. L. & Branco, C. W. (2020). Comparison of different trophic state indices applied to tropical reservoirs. Lakes & Reservoirs: Research & Management, 25(2): 214-229.

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29: 115-129.

Lasne, E., Bergerot, B., Lek, S. & Laffaille, P. (2007). Fish zonation and indicator species for the evaluation of the ecological status of rivers: example of the Loire Basin (France). River Research and Applications, 23(8): 877-890.

Lee, H. J., Park, H. K. & Cheon, S. U. (2018). Effects of weir construction on phytoplankton assemblages and water quality in a large river system. International journal of environmental research and public health, 15(11): 2348.

Lowe-McConnell, R. H. (1999). Estudos ecológicos de comunidades de peixes tropicais. In Estudos ecológicos de comunidades de peixes tropicais, 534 p.

Luiz, E. A., Gomes, L. C., Agostinho, A. A. & Bulla, C. K. (2003). Influência de processos locais e regionais nas assembléias de peixes em reservatórios do Estado do Paraná, Brasil. Acta Scientiarum: Biological Sciencies. Maringá, 25(1): 107-114.

Luiz, E. A. 2006. Influência da construção da hidrelétrica do rio Jordão sobre a ictiofauna: impactos e colonização. Dissertação, Universidade Estadual de Maringá, Maringá, 66p.

Lytle, D. A. & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology and Evolution, 19: 94-100.

Magnuson, J. J., Crowder, L. B. & Medvick, P. A. (1979). Temperature as an ecological resource. American Zoologist, 19: 331-343.

Mantel, N. (1967). The detection of disease clustering and generalized regression approach. Cancer Research, 27: 209-220.

Margalef, R. (1975). Typology of reservoirs. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 19(3): 1841-1848.

Mather, P. M. (1976). Computational Methods of Multivariate Analysis in Physical Geography. London, John Wiley & Sons, 532p.

Matthews, W. J. (1986). Fish faunal ‘breaks’ and stream order in the eastern and central United States. Environmental Biology of Fishes, 7: 81-92.

Matthews, W. J. (2012). Patterns in freshwater fish ecology. Springer Science & Business Media.

McCune, B. & Grace, J. B. (2002). Analyses of Ecological Communities. Gleneden Beach, Oregon, MjM Software Design, 300p.

McCune, B. & Mefford, M. J. (2006). PC-ORD: multivariate analysis of ecological data. Version 5.14. Gleneden Beach, Oregon: MjM Software.

Miranda, L. E., Habrat, M. D. & Miyazono, S. (2008). Longitudinal Gradients along a Reservoir Cascade. Transactions of the American Fisheries Society, 137: 1851-1865.

Mirande, J. M. (2009) Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes). Cladistics, 25(6): 574-613.

Nelson, J. S. (2006). Fishes of the World: 1-601. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Publicaciones Especiales. Instituto Español de Oceanografía, 21: 185-198.

Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science, 308: 405-408.

Okada, E. K., Agostinho, A. A. & Gomes, L. C. (2005). Spatial and temporal gradients in artisanal fisheries of a large Neotropical reservoir the Itaipu Reservoir, Brazil. Canadian Journal Fish Aquatic Science, 62: 714-724.

Oliveira, E. F. & Goulart, E. (2000). Distribuição espacial de peixes em ambientes lênticos: interação de fatores. Acta Scientiarum, 22(2): 445-453.

Oliveira, E. F., Minte-Vera, C. V. & Goulart, E. (2005). Structure of fish assemblages along spatial gradients in a deep subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay border). Environmental Biology of Fishes, 72: 283-304.

Oyakawa, O. T., Akama, A., Mautari, K. C. & Nolasco, J. C. (2006). Peixes de riachos da Mata Atlântica nas Unidades de Conservação do Vale do Rio Ribeira de Iguape no Estado de São Paulo. Editora Neotrópica. 201p.

Pagioro, A. T. (1999). Variações espaço-temporais das características físicas e químicas da água, material em sedimentação e produtividade primária fitoplanctônica no reservatório de Itaipu, Paraná, Brasil. Tese, Universidade Estadual de Maringá, Maringá, 59p.

Park, Y. S., Kwon, Y. S., Hwang, S. J. & Park, S. (2014). Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environmental Modelling & Software, 55: 214-221.

Petry, A. C. & Schulz, U. H. (2001). Levantamento da comunidade de peixes do rio dos Sinos, RS. Acta Biologia Leopoldensia, 23(1): 49-58.

Petry, A. C. & Schulz, U. H. (2006). Longitudinal changes indicator species of fish fauna in the subtropical Sinos River, Brazil. Journal of Fish Biology, 69(1): 272-290.

Prchalova, M., Kubecka, J., Cech, M., Frouzova, J., Drastík, V., Hohausová, E., Juza, T., Kratochvil, M., Matena, J., Peterka, J., Riha, M., Tuser, M. & Vasek, M. (2009). The effect of depth, distance from dam and habitat on spatial distribution of fish in an artificial reservoir. Ecology of Freshwater Fish, 18(2): 247-260.

Prchalova, M., Kubecka, J., Vasek, M., Peterka, J., Sed’a, J., Juza, T., Riha, M., Jarolim, O., Tuser, M., Kratochvil, M., Cech, M., Drastík, V., Frouzova, J. & Hohausova, E. (2008). Distribution patterns of fishes in a Canyon-Shaped reservoir. Journal of Fish Biology, 73(1): 54-78.

Rantin, F. T. & Johansen, K. (1984). Responses of the teleost Hoplias malabaricus to hypoxia. Environmental Biology of Fishes, 11(3): 221-228.

Reis, R. E., Kullander, S. O. & Ferraris, C. J. (2003). Check listo f the freshwater fishes of south and central América. Porto Alegre: EDIPUCRS, 742p.

Resende, D. L. M. C. & Takeda, A. M. (2007). Larvas de Chironomidae (Diptera) em três Reservatórios do Estado do Paraná, Brasil. Revista Brasileira de Zoociências, 9(2):167-176.

Rodríguez, M. A. & Lewis Jr, W. M. (1997). Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecological Monographs, 67(1): 109-128.

Ross, S. T., Knight, J. G. & Wilkins, S. D. (1990). Longitudinal occurrence of the bayou darter (Percidae: Etheostoma rubrum) in Bayou Pierre – a response to stream order of habitat availability? Polskie Archiwum Hydrobiologii, 38(1): 221-233.

Santos, A. B. I., Terra, B. F. & Araújo, F. G. (2010). Influence of the river flow on the structure of fish assemblage along the longitudinal gradient from river to reservoir. Zoologia, 27(5): 732-740.

Schiemer, F. (2000). Fish as indicators for the assessment of the ecological integrity of large rivers. Hydrobiologia, 422: 271-278.

Ter Braak, C. J. F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5): 1167-1179.

Ter Braak, C. J. F. (1994). Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1(2): 127-140.

Thomaz, S. M., Bini, L. M. & Alberti, S. M. (1997). Limnologia do reservatório de Segredo: padrões de variação espacial e temporal. Reservatório de Segredo: bases ecológicas para o manejo. Eduem, 19-37.

Thornton, K. W. (1990). Perspectives on reservoir limnology. Pp. 1-13. In: Thornton, K. W., Kimmel, B. L. & Payne, F. E. (Eds.). Reservoir limnology: ecological perspectives. New York, John Wiley & Sons, 246p.

Thornton, K. W., Kennedy, R. H., Carroll, J. H., Walker, W. W., Gunkel, R. C. & Ashby, S. (1981). Reservoir sedimentation and water quality – an heuristic model. Pp 654-661. In: Stefan H. G. (Ed.). Proceedings of the symposium on surface water impoundments. American Society of Civil Engineers, New York, NY.

Train, S., Rodrigues, L. C., Borges, P. A. F., Pivato, B. M., Jati, S. & Bovo, V. M. (2003). Padrões Espaciais e Temporais de Variação da Biomassa Fitoplanctônica em Três Reservatórios da Bacia do Rio Paraná. pp.47-54. In: Workshop Produtividade em Reservatórios e Bioindicadores Pronex/CT-Hidro. Anais Universidade Estadual de Maringá/NUPELIA.

Vasek, M., Kubecka, J., Peterka, J., Cech, M., Vladislav, D., Hlatiki, M., Prchalova, M. & Frouzovà, J. (2004). Longitudinal and vertical spatial gradients in the distribution of fish within a Canyon-Shaped reservoir. International Review in Hydrobiology, 89(4): 352-362.

Vila-Gispert, A., Garcia-Berthou, E. & Moreno-Amich, R. (2002). Fish zonation in Mediterranean stream: effect of human disturbances. Aquatic Sciences, 64(2): 163-170.

Wootton, R. J. (1998). Behavioural Ecology of Teleost Fishes J.-GJ Godin (ed.). Reviews in Fish Biology and Fisheries, 8(4), 493.

Zimmerman, G. M., Goetz, H. & Mielke Jr, P. W. (1985). Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology, 66(2): 606-611.

Publicado

09/10/2021

Cómo citar

DEBONA, T. .; FONSECA, J. R. S. .; DRUZIAN, R. A. .; COLOMBARI NETO, J. .; SANTOS, V. V. dos; ORSI, C. H. .; FERNANDES, C.; PIANA, P. A. . Gradiente longitudinal en la estructura de ensamblaje de peces de un reservorio de acumulación: Capivari. Research, Society and Development, [S. l.], v. 10, n. 13, p. e143101321171, 2021. DOI: 10.33448/rsd-v10i13.21171. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21171. Acesso em: 5 ene. 2025.

Número

Sección

Ciencias Agrarias y Biológicas