Efecto de la presencia simultánea de cationes sodio y potasio sobre la síntesis hidrotermal de la zeolita MCM-22

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i14.21744

Palabras clave:

Zeolita; Síntesis hidrotermal; MCM-22; Cationes alcalinos.

Resumen

La síntesis hidrotermal de la zeolita MCM-22 se investigó en sistemas de reacción que contenían diferentes proporciones de cationes de sodio y potasio. El contenido de potasio R, definido como la relación molar entre la cantidad de potasio y los cationes inorgánicos totales en la mezcla de reacción, varió entre 0 y 0,9, manteniendo constante la concentración catiónica y la alcalinidad de las mezclas de reacción. Los materiales se caracterizaron por difracción de rayos X (DRX), adsorción/desorción física de N2 y microscopía electrónica de barrido (MEB). Los iones K+ favorecieron la formación de MCM-22 cuando el 45% del sodio fue reemplazado por potasio, reduciendo el tiempo necesario para sintetizar el precursor MCM-22(P) y produciendo muestras más cristalinas. Además, la cantidad relativa de iones de Na+ y K+ afectó significativamente la morfología y el tamaño de partícula de las muestras. El uso de mayores contenidos de potasio (R = 0,68 - 0,9) inhibió la cristalización de la zeolita MCM-22. Por tanto, el uso de mezclas de reacción con proporciones adecuadas de Na+ y K+ puede representar una estrategia eficaz para producir muestras altamente cristalinas en tiempos más cortos, reduciendo el costo de síntesis de esta zeolita.

Citas

Aiello, R., Crea, F., Testa, F., Demortier, G., Lentz, P., Wiame, M., & Nagy, J. B. (2000). Synthesis and characterization of aluminosilicate MCM-22 in basic media in the presence of fluoride salts. Microporous and Mesoporous Materials, 35-36, 585-595. https://doi.org/10.1016/S1387-1811(99)00252-8

Basaldella, E. I., & Tara, J. C. (1995). Synthesis of LSX zeolite in the NaK system: Influence of the NaK ratio. Zeolites, 15(3), 243–246. https://doi.org/10.1016/0144-2449(94)00006-E

Camblor, M. A., & P6rez-Pariente, J. (1991). Crystallization of zeolite beta: Effect of Na and K ions. Zeolites, 11(3), 202-220. https://doi.org/10.1016/S0144-2449(05)80220-9

Carriço, C. S., Cruz, F. T., Santos, M. B., Pastore, H. O., Andrade, H. M. C., & Mascarenhas, A. J. S. (2013). Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein. Microporous and Mesoporous Materials, 181, 74–82. https://doi.org/10.1016/j.micromeso.2013.07.020

Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. https://doi.org/10.1016/0144-2449(94)00013-I

Davis, M. E. (2014). Zeolites from a materials chemistry perspective. Chemistry of Materials, 26, 239–245. https://doi.org/10.1021/cm401914u

Degnan, T. F. (2007). Recent progress in the development of zeolitic catalysts for the petroleum refining and petrochemical manufacturing industries. In R. Xu, Z. Gao, J. Chen, & W. Yan (Eds.), From Zeolites to Porous MOF Materials: the 40th Anniversary of International Zeolite Conference, Proceedings of the 15th International Zeolite Conference (pp. 54–65). Elsevier. https://doi.org/10.1016/S0167-2991(07)80825-1

Díaz, U., Fornés, V., & Corma, A. (2006). On the mechanism of zeolite growing: Crystallization by seeding with delayered zeolites. Microporous and Mesoporous Materials, 90(1-3 SPEC. ISS.), 73–80. https://doi.org/10.1016/j.micromeso.2005.09.025

Fechete, I., Wang, Y., & Védrine, J. C. (2012). The past, present and future of heterogeneous catalysis. Catalysis Today, 189(1), 2–27. https://doi.org/10.1016/J.CATTOD.2012.04.003

Güray, I., Warzywoda, J., Baç, N., & Sacco, A. (1999). Synthesis of zeolite MCM-22 under rotating and static conditions. Microporous and Mesoporous Materials, 31, 241-251. https://doi.org/10.1016/S1387-1811(99)00075-X

Khaleque, A., Alam, M. M., Hoque, M., Mondal, S., Haider, J. B., Xu, B. Johir, M. A. H., Karmakar, A. K., Zhou, J. L., Ahmed, M. B., & Moni, M. A. (2020). Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2, Article 100019. https://doi.org/10.1016/J.ENVADV.2020.100019

Kirschhock, C. E. A., Feijen, E. J. P., Jacobs, P. A., & Martens, J. A. (2008). Hydrothermal Zeolite Synthesis. In G. Ertl, H. Knözinger, F. Schüth, & J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis (2nd ed., pp. 160-178). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527610044.hetcat0010

Laredo, G. C., Quintana-Solórzano, R., Castillo, J. J., Armendáriz-Herrera, H., & Garcia-Gutierrez, J. L. (2013). Benzene reduction in gasoline by alkylation with propylene over MCM-22 zeolite with a different Brønsted/Lewis acidity ratios. Applied Catalysis A: General, 454, 37–45. https://doi.org/10.1016/j.apcata.2013.01.001

Lawton, S. L., Leonowicz, M. E., Partridge, R. D., Chu, P., & Rubin, M. K. (1998). Twelve-ring pockets on the external surface of MCM-22 crystals. Microporous and Mesoporous Materials, 23(1-2), 109-117. https://doi.org/10.1016/S1387-1811(98)00057-2

Lawton, S. L, Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., Lissy, D. N., Rubin, M. K., Timken, H. C., Steuernagel, S., Woessner, D. E. (1996). Zeolite MCM-49: A Three-Dimensional MCM-22 Analogue Synthesized by in Situ Crystallization. The Journal of Physical Chemistry, 100, 3788-3798. https://doi.org/10.1021/jp952871e

Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41, 207-219. https://doi.org/10.1016/S0920-5861(98)00050-9

Li, Y., & Yu, J. (2021). Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nature Reviews Materials. https://doi.org/10.1038/s41578-021-00347-3

Marques, A. L. S., S., Monteiro, J. L. F., & Pastore, H. O. (1999). Static crystallization of zeolites MCM-22 and MCM-49. Microporous and Mesoporous Materials, 32, 131-145. https://doi.org/10.1016/S1387-1811(99)00099-2

Nishi, K., & Thompson, R. W. (2002). Synthesis of Classical Zeolites. In F. Schüth, K. S. W. Sing, & J. Weitkamp (Eds.), Handbook of Porous Solids (pp. 736-814). Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527618286.ch18a

Ravishankar, R., Li, M. M., & Borgna, A. (2005). Novel utilization of MCM-22 molecular sieves as supports of cobalt catalysts in the Fischer-Tropsch synthesis. Catalysis Today, 106(1–4), 149–153. https://doi.org/10.1016/j.cattod.2005.07.123

Roth, W. J., Chlubná, P., Kubů, M., & Vitvarová, D. (2013). Swelling of MCM-56 and MCM-22P with a new medium - Surfactant- tetramethylammonium hydroxide mixtures. Catalysis Today, 204, 8–14. https://doi.org/10.1016/j.cattod.2012.07.040

Rouquerol, F., Rouquerol, J., Sing, K. S. W., Llewellyn, P., Maurin. (2014). Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (2nd ed.). https://doi.org/10.1016/C2010-0-66232-8

Shi, J., Wang, Y., Yang, W., Tang, Y., & Xie, Z. (2015a). Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 44, 8877–8903. Royal Society of Chemistry. https://doi.org/10.1039/c5cs00626k

Shi, Y., Xing, E., Xie, W., Zhang, F., Mu, X., & Shu, X. (2015b). Directing gel: An effective method tailoring morphology of MWW zeolites and their catalytic performance in liquid-phase alkylation of benzene with ethylene. Microporous and Mesoporous Materials, 215, 5–18. https://doi.org/10.1016/j.micromeso.2015.04.041

Sig Ko, Y., & Seung Ahn, W. (2004). Crystallization of zeolite L from Na2O-K2O-Al2O3-SiO2-H2O system. Powder Technology, 145(1), 10–19. https://doi.org/10.1016/j.powtec.2004.03.016

Suzuki, Y., Wakihara, T., Itabashi, K., Ogura, M., & Okubo, T. (2009). Cooperative effect of sodium and potassium cations on synthesis of ferrierite. Topics in Catalysis, 52(1–2), 67–74. https://doi.org/10.1007/s11244-008-9136-6

Vuono, D., Pasqua, L., Testa, F., Aiello, R., Fonseca, A., Korányi, T. I., & Nagy, J. B. (2006). Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites. Microporous and Mesoporous Materials, 97(1–3), 78–87. https://doi.org/10.1016/j.micromeso.2006.07.015

Wu, Y., Ren, X., Lu, Y., & Wang, J. (2008). Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the static hydrothermal synthesis. Microporous and Mesoporous Materials, 112(1–3), 138–146. https://doi.org/10.1016/j.micromeso.2007.09.022

Wu, Y., Ren, X., & Wang, J. (2009). Facile synthesis and morphology control of zeolite MCM-22 via a two-step sol–gel route with tetraethyl orthosilicate as silica source. Materials Chemistry and Physics, 113(2–3), 773–779. https://doi.org/10.1016/J.MATCHEMPHYS.2008.08.008

Descargas

Publicado

30/10/2021

Cómo citar

QUINTELA, P. H. L.; LIMA, W. S.; SILVA, B. J. B. da; SILVA, A. O. S. da; RODRIGUES, M. G. F. Efecto de la presencia simultánea de cationes sodio y potasio sobre la síntesis hidrotermal de la zeolita MCM-22. Research, Society and Development, [S. l.], v. 10, n. 14, p. e192101421744, 2021. DOI: 10.33448/rsd-v10i14.21744. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21744. Acesso em: 4 jul. 2024.

Número

Sección

Ingenierías