Efeito da presença simultânea dos cátions sódio e potássio na síntese hidrotérmica da zeólita MCM-22
DOI:
https://doi.org/10.33448/rsd-v10i14.21744Palavras-chave:
Zeólita; Síntese hidrotérmica; MCM-22; Cátions alcalinos.Resumo
A síntese hidrotérmica da zeólita MCM-22 foi investigada em sistemas reacionais contendo diferentes proporções de cátions sódio e potássio. O teor de potássio R, definido como a razão molar entre a quantidade de potássio e o total de cátions inorgânicos na mistura reacional, variou entre 0 e 0,9, mantendo-se constantes a concentração catiônica e a alcalinidade das misturas reacionais. Os materiais foram caracterizados por difratometria de raios X (DRX), adsorção/dessorção física de N2 e microscopia eletrônica de varredura (MEV). Os íons K+ favoreceram a formação da MCM-22 quando se substituiu 45% do sódio por potássio, reduzindo o tempo necessário para sintetizar o precursor MCM-22(P) e produzindo amostras mais cristalinas. Além disso, a quantidade relativa dos íons Na+ e K+ afetou significativamente a morfologia e o tamanho de partícula das amostras. O emprego de teores de potássio mais elevados (R = 0,68 – 0,9) inibiu a cristalização da zeólita MCM-22. Desta forma, o uso de misturas reacionais com proporções adequadas de Na+ e K+ pode representar uma estratégia eficaz para produzir amostras altamente cristalinas em tempos mais curtos, reduzindo o custo de síntese da referida zeólita.
Referências
Aiello, R., Crea, F., Testa, F., Demortier, G., Lentz, P., Wiame, M., & Nagy, J. B. (2000). Synthesis and characterization of aluminosilicate MCM-22 in basic media in the presence of fluoride salts. Microporous and Mesoporous Materials, 35-36, 585-595. https://doi.org/10.1016/S1387-1811(99)00252-8
Basaldella, E. I., & Tara, J. C. (1995). Synthesis of LSX zeolite in the NaK system: Influence of the NaK ratio. Zeolites, 15(3), 243–246. https://doi.org/10.1016/0144-2449(94)00006-E
Camblor, M. A., & P6rez-Pariente, J. (1991). Crystallization of zeolite beta: Effect of Na and K ions. Zeolites, 11(3), 202-220. https://doi.org/10.1016/S0144-2449(05)80220-9
Carriço, C. S., Cruz, F. T., Santos, M. B., Pastore, H. O., Andrade, H. M. C., & Mascarenhas, A. J. S. (2013). Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein. Microporous and Mesoporous Materials, 181, 74–82. https://doi.org/10.1016/j.micromeso.2013.07.020
Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. https://doi.org/10.1016/0144-2449(94)00013-I
Davis, M. E. (2014). Zeolites from a materials chemistry perspective. Chemistry of Materials, 26, 239–245. https://doi.org/10.1021/cm401914u
Degnan, T. F. (2007). Recent progress in the development of zeolitic catalysts for the petroleum refining and petrochemical manufacturing industries. In R. Xu, Z. Gao, J. Chen, & W. Yan (Eds.), From Zeolites to Porous MOF Materials: the 40th Anniversary of International Zeolite Conference, Proceedings of the 15th International Zeolite Conference (pp. 54–65). Elsevier. https://doi.org/10.1016/S0167-2991(07)80825-1
Díaz, U., Fornés, V., & Corma, A. (2006). On the mechanism of zeolite growing: Crystallization by seeding with delayered zeolites. Microporous and Mesoporous Materials, 90(1-3 SPEC. ISS.), 73–80. https://doi.org/10.1016/j.micromeso.2005.09.025
Fechete, I., Wang, Y., & Védrine, J. C. (2012). The past, present and future of heterogeneous catalysis. Catalysis Today, 189(1), 2–27. https://doi.org/10.1016/J.CATTOD.2012.04.003
Güray, I., Warzywoda, J., Baç, N., & Sacco, A. (1999). Synthesis of zeolite MCM-22 under rotating and static conditions. Microporous and Mesoporous Materials, 31, 241-251. https://doi.org/10.1016/S1387-1811(99)00075-X
Khaleque, A., Alam, M. M., Hoque, M., Mondal, S., Haider, J. B., Xu, B. Johir, M. A. H., Karmakar, A. K., Zhou, J. L., Ahmed, M. B., & Moni, M. A. (2020). Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2, Article 100019. https://doi.org/10.1016/J.ENVADV.2020.100019
Kirschhock, C. E. A., Feijen, E. J. P., Jacobs, P. A., & Martens, J. A. (2008). Hydrothermal Zeolite Synthesis. In G. Ertl, H. Knözinger, F. Schüth, & J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis (2nd ed., pp. 160-178). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527610044.hetcat0010
Laredo, G. C., Quintana-Solórzano, R., Castillo, J. J., Armendáriz-Herrera, H., & Garcia-Gutierrez, J. L. (2013). Benzene reduction in gasoline by alkylation with propylene over MCM-22 zeolite with a different Brønsted/Lewis acidity ratios. Applied Catalysis A: General, 454, 37–45. https://doi.org/10.1016/j.apcata.2013.01.001
Lawton, S. L., Leonowicz, M. E., Partridge, R. D., Chu, P., & Rubin, M. K. (1998). Twelve-ring pockets on the external surface of MCM-22 crystals. Microporous and Mesoporous Materials, 23(1-2), 109-117. https://doi.org/10.1016/S1387-1811(98)00057-2
Lawton, S. L, Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., Lissy, D. N., Rubin, M. K., Timken, H. C., Steuernagel, S., Woessner, D. E. (1996). Zeolite MCM-49: A Three-Dimensional MCM-22 Analogue Synthesized by in Situ Crystallization. The Journal of Physical Chemistry, 100, 3788-3798. https://doi.org/10.1021/jp952871e
Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41, 207-219. https://doi.org/10.1016/S0920-5861(98)00050-9
Li, Y., & Yu, J. (2021). Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nature Reviews Materials. https://doi.org/10.1038/s41578-021-00347-3
Marques, A. L. S., S., Monteiro, J. L. F., & Pastore, H. O. (1999). Static crystallization of zeolites MCM-22 and MCM-49. Microporous and Mesoporous Materials, 32, 131-145. https://doi.org/10.1016/S1387-1811(99)00099-2
Nishi, K., & Thompson, R. W. (2002). Synthesis of Classical Zeolites. In F. Schüth, K. S. W. Sing, & J. Weitkamp (Eds.), Handbook of Porous Solids (pp. 736-814). Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527618286.ch18a
Ravishankar, R., Li, M. M., & Borgna, A. (2005). Novel utilization of MCM-22 molecular sieves as supports of cobalt catalysts in the Fischer-Tropsch synthesis. Catalysis Today, 106(1–4), 149–153. https://doi.org/10.1016/j.cattod.2005.07.123
Roth, W. J., Chlubná, P., Kubů, M., & Vitvarová, D. (2013). Swelling of MCM-56 and MCM-22P with a new medium - Surfactant- tetramethylammonium hydroxide mixtures. Catalysis Today, 204, 8–14. https://doi.org/10.1016/j.cattod.2012.07.040
Rouquerol, F., Rouquerol, J., Sing, K. S. W., Llewellyn, P., Maurin. (2014). Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (2nd ed.). https://doi.org/10.1016/C2010-0-66232-8
Shi, J., Wang, Y., Yang, W., Tang, Y., & Xie, Z. (2015a). Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 44, 8877–8903. Royal Society of Chemistry. https://doi.org/10.1039/c5cs00626k
Shi, Y., Xing, E., Xie, W., Zhang, F., Mu, X., & Shu, X. (2015b). Directing gel: An effective method tailoring morphology of MWW zeolites and their catalytic performance in liquid-phase alkylation of benzene with ethylene. Microporous and Mesoporous Materials, 215, 5–18. https://doi.org/10.1016/j.micromeso.2015.04.041
Sig Ko, Y., & Seung Ahn, W. (2004). Crystallization of zeolite L from Na2O-K2O-Al2O3-SiO2-H2O system. Powder Technology, 145(1), 10–19. https://doi.org/10.1016/j.powtec.2004.03.016
Suzuki, Y., Wakihara, T., Itabashi, K., Ogura, M., & Okubo, T. (2009). Cooperative effect of sodium and potassium cations on synthesis of ferrierite. Topics in Catalysis, 52(1–2), 67–74. https://doi.org/10.1007/s11244-008-9136-6
Vuono, D., Pasqua, L., Testa, F., Aiello, R., Fonseca, A., Korányi, T. I., & Nagy, J. B. (2006). Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites. Microporous and Mesoporous Materials, 97(1–3), 78–87. https://doi.org/10.1016/j.micromeso.2006.07.015
Wu, Y., Ren, X., Lu, Y., & Wang, J. (2008). Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the static hydrothermal synthesis. Microporous and Mesoporous Materials, 112(1–3), 138–146. https://doi.org/10.1016/j.micromeso.2007.09.022
Wu, Y., Ren, X., & Wang, J. (2009). Facile synthesis and morphology control of zeolite MCM-22 via a two-step sol–gel route with tetraethyl orthosilicate as silica source. Materials Chemistry and Physics, 113(2–3), 773–779. https://doi.org/10.1016/J.MATCHEMPHYS.2008.08.008
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Paulo Henrique Leite Quintela; Wellington Siqueira Lima; Bruno José Barros da Silva; Antonio Osimar Sousa da Silva; Meiry Gláucia Freire Rodrigues
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.