El uso de tecnologías digitales en la enseñanza de la geometría espacial: una revisión literaria
DOI:
https://doi.org/10.33448/rsd-v10i15.22743Palabras clave:
Aprendizaje; Enseñanza; Geometría espacial; Matemáticas; Tecnología.Resumen
El aprendizaje de las matemáticas siempre ha causado malestar a muchos estudiantes, especialmente durante la escuela secundária, período de profundización en algunas áreas, como es el caso del estudio de la Geometría Espacial, una asignatura de abordaje complejo en el aula. Objetivo: este estudio tiene como objetivo la búsqueda de trabajos en la literatura con el fin de encontrar evidencias sobre el uso de las nuevas tecnologías digitales en la enseñanza y el aprendizaje de la Geometría Espacial. Metodología: para la investigación se definieron expresiones de búsqueda, bases de datos y criterios de inclusión y exclusión. Resultados: luego de buscar en las principales bases de datos nacionales e internacionales, se seleccionaron diez artículos para lectura y dos contemplan parcialmente los objetivos propuestos. El primero propone un sistema computacional para modelado tridimensional a partir de planos y rectas, sin embargo, utiliza tecnologías obsoletas, mientras que el segundo estudia el aprendizaje, pero solo para profesores principiantes de matemáticas, y no para estudiantes. Considerando los mismos criterios metodológicos anteriores, se realizó una segunda búsqueda con la inclusión de la expresión “realidad aumentada”, em lo que resultó cinco artículos, que también se describen brevemente en Resultados. Conclusión: los resultados obtenidos permiten concluir que, si bien la literatura muestra trabajos relevantes que asocian la enseñanza y el aprendizaje de la Geometría Espacial con las tecnologías digitales, la mayoría describe únicamente el estudio de los sólidos geométricos, donde otros temas de esta área no son considerados, como posiciones relativas entre puntos, rectas y planos en el espacio.
Citas
Ayers, S. W., & Bitter, G. (1988). Using computers to enhance the mathematics classroom. ACM SIGCUE Outlook, 20(1), 115-130. https://doi.org/10.1145/382236.382864
Bajura, M., & Neumann, U. (1995). Dynamic registration correction in video-based augmented reality systems. IEEE Computer Graphics and Applications, 15(5), 52-60. https://doi.org/10.1109/38.403828
Baki, A., Kosa, T., & Guven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualisation skills of pre‐service mathematics teachers. British Journal of Educational Technology, 42(2), 291-310. https://doi.org/10.1111/j.1467-8535.2009.01012.x
Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for research in mathematics education, 21(1), 47-60. https://doi.org/10.5951/jresematheduc.21.1.0047
Battista, M. T., & Clements, D. H. (1996). Students' understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27(3), 258-292. https://doi.org/10.5951/jresematheduc.27.3.0258
Bennie, K., & Smit, S. (1999). Spatial sense: Translating curriculum innovation into classroom practice. In 5th Annual Congress of the Association for Mathematics Education of South Africa (AMESA), Port Elizabeth. http://academic.sun.ac.za/mathed/malati/files/geometry992.pdf
Borba, M. C. (2012). Humans-with-media and continuing education for mathematics teachers in online environments. ZDM, 44(6), 801-814. https://doi.org/10.1007/s11858-012-0436-8
Cáceres, M. J., Chamoso, J. M., & Azcárate, P. (2010). Analysis of the revisions that pre-service teachers of Mathematics make of their own project included in their learning portfolio. Teaching and Teacher Education, 26(5), 1186-1195. https://doi.org/10.1016/j.tate.2010.01.003
Chang, K. E., Sung, Y. T., & Lin, S. Y. (2007). Developing geometry thinking through multimedia learning activities. Computers in Human Behavior, 23(5), 2212-2229. https://doi.org/10.1016/j.chb.2006.03.007
Chaquiam, M., Maués, D. D. D. N., Cabral, N. F., Dias, G. N., Rodrigues, A. E., & Pamplona, V. M. S. (2020). A percepção de alunos e professores sobre o ensino e aprendizagem do cilindro circular reto. Research, Society and Development, 9(9), e973998110. http://dx.doi.org/10.33448/rsd-v9i9.8110
De Cassio Macedo, A., da Silva, J. A., & Buriol, T. M. (2016). Usando Smartphone e Realidade aumentada para estudar Geometria espacial. RENOTE, 14(2). https://doi.org/10.22456/1679-1916.70688
Downs, R., & Desouza, A. (2006). Learning to think spatially: GIS as a support system in the K-12 curriculum. Committee on the Support for the Thinking Spatially, National Research Council, Publisher: The National Academies Press. https://doi.org/10.17226/11019
Ferdiánová, V. (2017). GeoGebra Materials for LMS Moodle Focused Monge on Projection. Electronic Journal of e-Learning, 15(3), 259-268. https://files.eric.ed.gov/fulltext/EJ1146049.pdf
Fernández-Enríquez, R., & Delgado-Martín, L. (2020). Augmented reality as a didactic resource for teaching mathematics. Applied Sciences, 10(7), 2560. https://doi.org/10.3390/app10072560
Frenzel, A. C., Goetz, T., Pekrun, R., & Watt, H. M. (2010). Development of mathematics interest in adolescence: Influences of gender, family, and school context. Journal of Research on Adolescence, 20(2), 507-537. https://doi.org/10.1111/j.1532-7795.2010.00645.x
Garrity, C. (1998). Does the Use of Hands-On Learning, with Manipulatives, Improve the Test Scores of Secondary Education Geometry Students?. https://files.eric.ed.gov/fulltext/ED422179.pdf
Gomes, A. P. L., Ramos, R. A., de Brito, L. F., Batista, M. F., & Leal, B. G. (2019). GeometriAR: aplicativo educacional com realidade aumentada para auxiliar o ensino de sólidos geométricos. RENOTE, 17(1), 405-414. https://doi.org/10.22456/1679-1916.95848
Gurny, H. G. (2003). High School Students' Performance on Vandenberg's Mental Rotations Test: Art Ability, Gender, Activities, Academic Performance, Strategies, and Ease of Taking the Test. https://files.eric.ed.gov/fulltext/ED479372.pdf
Hidayat, H., Sukmawarti, S., & Suwanto, S. (2021). The application of augmented reality in elementary school education. Research, Society and Development, 10(3), e14910312823. http://dx.doi.org/10.33448/rsd-v10i3.12823
Ibili, E., Resnyansky, D., & Billinghurst, M. (2019). Applying the technology acceptance model to understand maths teachers’ perceptions towards an augmented reality tutoring system. Education and Information Technologies, 24(5), 2653-2675. https://doi.org/10.1007/s10639-019-09925-z
Krebs, D., da Rosa Zucolo, M. P., & Ghisleni, T. S. (2019). O uso da realidade aumentada aplicado em ensino. Research, Society and Development, 8(7), e1871080. http://dx.doi.org/10.33448/rsd-v8i7.1080
Lavy, I., & Shriki, A. (2010). Engaging in problem posing activities in a dynamic geometry setting and the development of prospective teachers’ mathematical knowledge. The Journal of Mathematical Behavior, 29(1), 11-24. https://doi.org/10.1016/j.jmathb.2009.12.002
Lee, I. J. (2020). Using augmented reality to train students to visualize three-dimensional drawings of mortise-tenon joints in furniture carpentry. Interactive Learning Environments, 28(7), 930-944. https://doi.org/10.1080/10494820.2019.1572629
Maier, P. H. (1996). Spatial geometry and spatial ability–How to make solid geometry solid. In Selected papers from the Annual Conference of Didactics of Mathematics (pp. 63-75). http://webdoc.sub.gwdg.de/ebook/e/gdm/1996/maier.pdf
Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self‐concept, interest, grades, and standardized test scores: Reciprocal effects models of causal ordering. Child development, 76(2), 397-416. https://doi.org/10.1111/j.1467-8624.2005.00853.x
März, V., & Kelchtermans, G. (2013). Sense-making and structure in teachers' reception of educational reform. A case study on statistics in the mathematics curriculum (vol 29, pg 13, 2013). Teaching and Teacher Education, 31(1), 67-67. https://doi.org/10.1016/j.tate.2012.08.004
Mayer, R. E. (1987). Educational psychology: A cognitive approach. Scott Foresman & Company.
McCoy, L. P. (1996). Computer-based mathematics learning. Journal of Research on Computing in Education, 28(4), 438-460. https://doi.org/10.1080/08886504.1996.10782177
Pasqualotti, A., & Freitas, C. M. D. S. (2002). MAT3D: a virtual reality modeling language environment for the teaching and learning of mathematics. CyberPsychology & Behavior, 5(5), 409-422. https://doi.org/10.1089/109493102761022832
Santos, M. I., Breda, A., & Almeida, A. M. (2017). Design approach of mathematics learning activities in a digital environment for children with autism spectrum disorders. Educational Technology Research and Development, 65(5), 1305-1323. https://doi.org/10.1007/s11423-017-9525-2
Silva, A. G. S., De Sousa, F. J. F., & De Medeiros, J. L. (2020). O ensino da matemática: aspectos históricos. Research, Society and Development, 9(8), e488985850. http://dx.doi.org/10.33448/rsd-v9i8.5850
Slezáková, J. (2011). Geometrická představivost v rovině (Doctoral dissertation, disertační práce), PřF UP, Olomouc. https://theses.cz/id/op6350/?lang=en
Uygan, C., & Kurtuluş, A. (2016). Effects of teaching activities via Google Sketchup and concrete models on spatial skills of preservice mathematics teachers. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 7(3), 510-535. https://doi.org/10.16949/turkbilmat.273993
Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic press.
Watt, H. M. (2004). Development of adolescents' self‐perceptions, values, and task perceptions according to gender and domain in 7th‐through 11th‐grade Australian students. Child development, 75(5), 1556-1574. https://doi.org/10.1111/j.1467-8624.2004.00757.x
Yilmaz, H. B. (2009). On the development and measurement of spatial ability. International Electronic Journal of Elementary Education, 1(2), 83-96. https://www.iejee.com/index.php/IEJEE/article/view/279/302
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Francisco César de Oliveira; Robson Rodrigues da Silva; Márcia Aparecida Silva Bissaco
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.