Cuantificación por qNMR y análisis in silico de isobruceína B y neosergeolida de Picrolemma sprucei como inhibidores potenciales de la proteasa del SARS-CoV-2 (3CLpro) y la ARN polimerasa dependiente de ARN (RdRp) y propiedades farmacocinéticas y toxicológicas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i16.23220

Palabras clave:

Cuassinoides; Caferana; qRMN; Acoplamiento molecular; SARS-CoV-2.

Resumen

Objetivo: Cuantificar los cuassinoides de P. sprucei, una planta medicinal nativa de la región Amazónica, mediante qNMR e investigar a través de enfoques in silico, el potencial inhibitorio de isobruceína B y neosergeolida sobre objetivos 3CLpro y RdRp del SARS-CoV-2. Métodos: la cuantificación se realizó en una fracción (F2-F3) enriquecida con los cuassinoides isobruceína B y neosergeolida, utilizando qRMN por el método PULCON. Se realizaron ensayos in silico utilizando acoplamiento molecular para evaluar las interacciones y la afinidad de unión entre los ligantes de neosergeolida e isobruceína B con objetivos de SARS-CoV-2 3CLpro y RdRp, además se utilizaron servidores en línea para estimar la farmacocinética y la toxicidad. Resultados: se pudo determinar la cantidad en mg de los dos cuassinoides isobruceína B y neosergeolida en la fracción F2-F3 (769,6 mg), presentes en cantidades significativas en el extracto de PsMeOH (5,46%). Los resultados del análisis de acoplamiento molecular, basados en las estructuras cristalizadas de RdRp y 3CLpro, indicaron que isobruceína B y neosergeolida son inhibidores potenciales de las dos proteínas evaluadas, además de mostrar la importancia de los enlaces de hidrógeno y las interacciones pi (π) para los sitios activos previstos para cada objetivo. Conclusión: Los resultados sugieren que los cuassinoides de P. sprucei pueden interactuar con los objetivos 3CLpro y RdRp. Se necesitan más investigaciones y experimentos in vitro e in vivo para confirmar los resultados del acoplamiento molecular e investigar los riesgos de P. sprucei como planta medicinal contra COVID-19.

Citas

Amorim, R. C. N. (2009). Contribuições para o conhecimento da composição química e atividade biológica de infusões, extratos e quassinóides obtidos de Picrolemma sprucei Hook.f. (Simaroubaceae). Tese de Doutorado em Biotecnologia - Universidade Federal do Amazonas, Manaus, AM, Brasil.

Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. (2003). Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs. Science, 300, 1763–1767.

Andrade-Neto, V. F., Pohlit, A. M., Pinto, A. C. S., Silva, E. C. C., Nogueira, K. L., Melo, M. R. S., Henrique, M. C., Amorim, R. C. N., Silva L. F. R. & Costa, M. R. F. (2007). In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants. Memórias do Instituto Oswaldo Cruz, 102(3), 359–366.

Beyer, T., Schollmayer, C., Holzgrabe, U. (2010). The role of solvents in the signal separation for quantitative 1H NMR spectroscopy. Journal of pharmaceutical and biomedical analysis, 52, 51–58.

Braga, R. C., Alves, V. M., Muratov, E. N., Strickland, J., Kleinstreuer, N., Tropsha, A. & Andrade, C. H. J. (2017). Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals. Journal of Chemical Information and Modeling, 57 (5), 1013–1017.

Braga, R. C., Alves, V. M., Silva, M. F. B., Muratov, E., Fourches, D., Liao, L. M., Tropsha, A. & Andrade, C. H. (2015). Pred-hERG: A novel web-accessible computational tool for predicting cardiac toxicity. Molecular Informatics, 34, 698-701.

Burton, I. W., Quilliam, M. A. & Walter, J. A. (2005). Quantitative 1H NMR with external standards: use in preparation of calibration solutions for algal toxins and other natural products. Analytical Chemistry, 77, 3123– 3131.

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z, Liu, G., Lee, P.W. & Tang, Y. (2012). AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52, 3099–3105.

Daina, A., Michielin, O. & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.

Das, S., Sarmah, S., Lyndem, S. & Roy, A. S. (2020). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics, 1-11.

Da Silva, F. M. A., da Silva, K. P. A., de Oliveira, L. P. M., Costa, E. V., Koolen, H. H. F., Pinheiro, M. L. B., de Souza, A. Q. L. & de Souza, A. D. L. (2020). Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem. Inst. Oswaldo Cruz, 115, 1–8.

Dong. E., Du, H. & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time, Lancet Infectious Diseases, 20(5), 533-534.

Ferreira, M. C. (2000). O mercado de plantas medicinais em Manaus. In: A floresta em jogo. O extrativismo na Amazônia Central. Editor: L’ Orstom. Editora científica Laure Emperaire, tradução brasileira Editora da UNESP, 177-181.

Fukamiya, N., Lee, K. H., Muhammad, I., Murakami, C., Okano, M., Harvey, I., Pelletier, J. (2005). Structure-activity relationships of quassinoids for eukaryotic protein synthesis. Cancer Letter, 220, 37-48.

Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., Yang, X., Li, J., Yang, H., Liu, Z., Xu, W., Guddat, L. W., Wang, Q., Lou, Z. & Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368(6492), 779-782.

Ghahremanpour, M. M., Tirado-Rives, J., Deshmukh, M., Ippolito, J. A., Zhang, C.H., Vaca, I.C., Liosi, M. E., Anderson, K. S. & Jorgensen, W. L. (2020). Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Medicinal Chemistry Letters, 11(12), 2526-2533.

Guan, L., Yang, H., Cai, Y., Sun. L., Di, P., Li, W., Liu, G. & Tang, Y. (2018). ADMET- score - a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm, 10(1), 148-157.

Guedes, I. A., Costa, L. S. C., Santos, K. B., Karl, A. L. M., Rocha, G. K., Teixeira, I. M., Galheigo, M. M., Medeiros, V., Krempser, E., Custódio, F. L., Barbosa, H. J. C., Nicolás, M. F. & Dardeme L. E. (2021). Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Scientific Reports,11, 5543.

Guo, Z., Vangapandu, S., Sindelar, R.W., Walker, L.A. & Sindelar, R. D. (2005). Biologically active quassinoids and their chemistry: Potentianl leads for drug design. Current Medicinal Chemistry, 12, 173-190.

Hahn, M. Receptor Surface Models. 1. Definition and Construction. (1995). Journal of Medicinal Chemistry, 38, 12, 2080–2090.

Hasan, A., Mahamud R. A., Bondhon, T. A., Jannat, K., Jahan, R., Rahmatullah M. (2020). Can javanicins be potential inhibitors of SARS-CoV-2 C-3 like protease? An evaluation through molecular docking studies. Journal of Natural & Ayurvedic Medicine, 4(2), 000250.

Hasan, A., Mahamud, R. A., Bondhon, T. A., Jannat, K., Farzana, B., Jahan & Rahmatullah, M. (2020). Molecular docking of quassinoid compounds javanicolides A-F and H with C3-like protease (or 3CL pro) of SARS and SARS-C0V-2 (COVID-19) and VP8* domain of the outer capsid protein VP4 of rotavirus A. Journal of Medicinal Plants Studies. 2020; 8(4 Part A):14-19.

Kleinstreuer, N. C., Hoffmann, S., Alépée, N., Allen, D., Ashikaga, T., Casey, W., Clouet, E., Cluzel, M., Desprez, B., Gellatly, N., Göbel, C., Kern, P. S., Klaric, M., Kühnl, J., Martinozzi-Teissier, S., Mewes, K., Miyazawa, M., Strickland, J., van Vliet, E., Zang, Q. & Petersohn D. Non-animal methods to predict skin sensitization (II): an assessment of defined approaches*. Critical Reviews in Toxicology, 48(5), 359-374.

Le Cointe, P. (1947). Árvores e plantas úteis (Amazônia brasileira III). Companhia Editora Nacional, 92.

Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P.J. (1997). Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 23, 3-25.

Moretti, C., Polonsky, J., Vuilhorgne, M. & Prange, T. Isolation and structure of sergeolide a potent cytotoxic quassinoid from Piclolemma pseudocoffea. Tetrahedron Letters, 23(6), 647-650, 1982.

Morse, J. S., Lalonde, T., Xu, S. & Liu, W. R. (2020) Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem, 21(5), 730-738.

Mortelmans, K. & Zeiger E. The Ames Salmonella/microsome mutagenicity assay. (2000). Mutation Research, 20;455(1-2):29-60.

Neves, K. O. G., Ramos, A. S., Bruginski, E. R. D., De Souza, A. D. L., Nunomura, R. C. S., Campos, F. R., Da Silva, F. M. A. & Machado, M. B. (2021). Lisboaeflavanonol A: A new flavonoid glycoside obtained from Amazonian Eugenia lisboae. Phytochemistry Letters, 43, 65-69.

Nunomura, R. C. S., Silva, E. C. C., Oliveira, D. F., Garcia, A. M., Boeloni, J. N., Nunomura S. M. & Pohlit, A. M. (2006). In vitro studies of the anthelmintic activity of Picrolemma sprucei Hook. f. (Simaroubaceae). Acta Amazonica, 36, 327-330.

Nunomura, R. C. S., Silva, E. C. C., Nunomura, S. M., Amaral, A. C. F., Barreto, A. S., Siani A. C., Pohlit, A. M. (2012). Quantification of antimalarial quassinoids neosergeolide and isobrucein b in stem and root infusions of Picrolemma sprucei Hook F. by HPLC-UV analysis. Chromatography and Its Applications, 187-200.

Oliveira, E. S. C., Pontes, F. L. D., Acho, L. D. R., do Rosário, A. S., da Silva, B. J. P., de A Bezerra, J., Campos, F. R., Lima, E. S. & Machado, M. B. (2021). qNMR quantification of phenolic compounds in dry extract of Myrcia multiflora leaves and its antioxidant, anti-AGE, and enzymatic inhibition activities. Journal of Pharmaceutical and Biomedical Analysis, 15, 201:114109.

Peele, K. A., Potla, D. C., Srihansa, T., Krupanidhi, S., Ayyagari, V. S., Babu, D. J., Indira, M., Reddy, A. R., & Venkateswarulu T. C. (2020). Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: a computational study. Informatics in Medicine Unlocked, 19, 100345.

Pires, D. E., Blundell, T. L. & Ascher, D. B., (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58, 4066–4072.

Pohlit, A. M., Jabor, V. A. P., Amorim, R. C. N., Silva, E. C. C. & Lopes, N. P. (2009). LC-ESI-MS Determination of quassinoids isobrucein B and neosergeolide in Picrolemma sprucei stem infusions. Journal of the Brazilian Chemical Societyv. 20(6), 1065-1070.

Pokhrel, R., Chapagain, P. & Siltberg-Liberles, J. (2020). Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2. Journal of Medical Microbiology, 69(6), 864-873.

Priest, B. T., Bell, I. M. & Garcia, M. L. (2008). Role of herg potassium channel assays in drug development. Channels (AUSTIN), 2(2), 87-93.

Qamar, M. T., Alqahtani, S. M., Alamri, M. A. & Chen, L. L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313-319.

Ribeiro, J. E. L.; Hopkins, M. J. G.; Vicentini, A. ; Sothers, C. A. ; Costa, M. A. S. ; Brito, J. M. ; Souza, M. A. D. ; Martins, L. H. P. ; Lohmann, L. G. ; Assunção, P. A. C. L. ; Pereira, E. C. ; Silva, C. F. ; Mesquita, M. R. ; Procópio, L. C. (1999). Flora da Reserva Ducke – Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central. Manaus-AM, INPA, p. 547-549.

Rim, K. T. (2020). In silico prediction of toxicity and its applications for chemicals at work [published online ahead of print, 2020 May 14]. Toxicol Environ Health Sci, 1-12.

Saraiva, R. C. G. (2001). Estudo Fitoquímico de Picrolemma sprucei Hook (Simaroubaceae) e Dosagem dos Princípios Antimaláricos nos Chás do Caule e Raiz. Dissertação de Mestrado em Química, Universidade Federal do Amazonas, Manaus, AM, Brasil.

Saraiva, R. C. G., Barreto, A.S., Siani, A.C., Ferreira, J.L.P., Araujo, R.B., Nunomura, S.M. & Pohlit, A.M. (2002). Anatomia foliar e caulinar de Picrolemma sprucei Hook (Simaroubaceae). Acta Amazonica. 33(2) 213-220.

Shou, W. Z. (2020). Current status and future directions of high-throughput ADME screening in drug discovery. Journal of Pharmaceutical Analysis, 10(3), 201-208.

Silva, E. C. C. (2006). Isolamento, transformação química e atividade biológica in vitro dos quassinóides neosergeolida e isobruceína B. Dissertação de mestrado. Universidade Federal do Amazonas, Manaus, Amazonas. 2006.

Thomas, W. W. (1990) The American genera of Simaroubaceae and their distribution. Acta Botanica Brasilica, 4 (1), 11-18.

Tyburn, J. M. & Coutant, J. (2016). TopSpin ERETIC 2 - Electronic to Access In vivo Concentration User Manual, 1–34.

Vieira, I. J. C., Rodrigues, E., Fernandes, J. B. & Silva, M. F. G. F. (2000). Complete 1H and 13C chemical chift assignments of a new C22-quassinoid isolated from Picrolemma sprucei Hook by NMR spectroscopy. Magnetic Resonance in Chemistry, 38, 805-808.

World Health Organization. (2021). Coronavirus disease (COVID-19) situation reports. Retrieved form https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 19 June 2021.

Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang Y, Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L. & Li, H. (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766-88.

Wu, Y. & Wang, G., Machine Learning Based Toxicity Prediction: From Chemical Structural Description to Transcriptome Analysis. (2018). International Journal of Molecular Sciences,19(8), 2358.

Yu, R., Chen, L., Lan, R., Shen, R. & Li, P. (2020). Computational screening of antagonist against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 2020; 56(2), 106012.

Zaheer-Ul-Haq, Halim, S. A., Uddin, R., & Madura, J. D. (2010). Benchmarking docking and scoring protocol for the identification of potential acetylcholinesterase inhibitors. Journal of Molecular Graphics & Modelling, 28(8), p. 870-882.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan, W., & China Novel Coronavirus Investigating and Research Team (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine, 382(8), 727–733.

Zukerman-Schpector, J., Castellano, E. E., Fho, E.R. & Vieira, I. J. C. (1994). A new quassinoid isolated from Picrolemma pseudocoffea. Acta Crystallographica C, 50, 794-797.

Descargas

Publicado

07/12/2021

Cómo citar

SILVA, M. T. da; OLIVEIRA, M. G. de .; PAULA, J. R. de .; SILVA, V. B. da .; NEVES, K. de O. G. .; MACHADO, M. B. .; NUNOMURA, R. de C. S. . Cuantificación por qNMR y análisis in silico de isobruceína B y neosergeolida de Picrolemma sprucei como inhibidores potenciales de la proteasa del SARS-CoV-2 (3CLpro) y la ARN polimerasa dependiente de ARN (RdRp) y propiedades farmacocinéticas y toxicológicas. Research, Society and Development, [S. l.], v. 10, n. 16, p. e69101623220, 2021. DOI: 10.33448/rsd-v10i16.23220. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23220. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias de la salud