Mapeo térmico de rutas en el transporte de productos farmacéuticos utilizando el enfoque de aprendizaje máquina: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i16.23665

Palabras clave:

Cadena de frío; Medicamentos; Vacuna; Modelado; Control de calidad.

Resumen

La cadena de frío es fundamental para garantizar la calidad y eficacia de los medicamentos transportados y almacenados. Para ello, es necesario realizar el mapeo térmico de las rutas de los medicamentos transportados entre 15 ° C y 30 ° C, para que se pueda tomar la decisión más asertiva sin incrementar los costos. Este estudio tiene como objetivo identificar los principales factores que influyen en el mapeo térmico de productos farmacéuticos en la cadena de frío y la aplicación de la técnica de aprendizaje automático. El método utilizado para esta revisión sistemática es el Prisma, donde se analizaron las etapas de identificación, cribado, elegibilidad e inclusión. Después de analizar 75 artículos, el resultado muestra que solo ocho artículos fueron consistentes con el uso de modelos en la distribución de la cadena de frío de los medicamentos. Así, se puede concluir que existe un amplio campo por investigar en cuanto al uso de algoritmos de predicción en la cadena de frío de medicamentos y vacunas.

Citas

Brazil. (2020). Collegiate Board Resolution – RDC no. 430 of 08 October 2020. Provides for the Good Distribution, Storage and Transport of Medicines Practices. Issuing agency: ANVISA – Agência Nacional de Vigilância Sanitária. https://www.in.gov.br/en/web/dou/-/resolucao-de-diretoria-colegiada-rdc-n-430-de-8-de-outubro-de-2020-282070593.

Burinskiene, A. (2018). Pharma Supply Chain: Efficiency Modelling Approach. Journal of System and Management Sciences. 8: 65-73

Chaudhuri A., Dukovska-Popovska I., Subramanian N., Chan H.K., & Bai R. (2018). Decision-making in cold chain logistics using data analytics: a literature review. The International Journal of Logistics Management. 29: 839-861. https://doi.org/10.1108/IJLM-03-2017-0059

Chen, Y. H. (2020). Intelligent algorithms for cold chain logistics distribution optimization based on big data cloud computing analysis. J Cloud Comp. 9: 1-12. https://doi.org/10.1186/s13677-020-00174-x

Costa, L. B. M. & Filho, M. G. (2016). Lean healthcare: review, classification and analysis of literature. Production Planning and Control. 27: 823-36.

De Paoli F., Bishara R.H., & van Asselt E.J. (2020). How to define the right ambient temperature range for storage and distribution of pharmaceutical raw materials. Biologicals. 69: 66-69. doi: 10.1016/j.biologicals.2020.12.001. Epub 2020 Dec 17. PMID: 33342746.

Dobrzykowski D., Saboori V., Hong P., & Kim S. (2014). A structured analysis of operations and supply chain management research in healthcar. International Journal of Production Economics. 147: 514-530.

Dou, S., Liu, G., & Yang, Y. (2020). A New Hybrid Algorithm for Cold Chain Logistics Distribution Center Location Problem. IEEE Access, 1–1. doi:10.1109/access.2020.2990988

Fakhimi M., & Probert J. (2013). Operations research within UK healthcare: a review. Journal of Enterprise Information Management. 26: 21-49.

Guimarães, C. M., Carvalho, J. C. D. (2013). Strategic outsourcing: a lean tool of healthcare supply chain management. Strategic Outsourcing: An International Journal. 6: 138-66

Health Canada. (2020). Guidelines for environmental control of drugs during storage and transportation GUI-0069. https://www.canada.ca/en/health-canada/services/d rugs-health-products/compliance-enforcement/good-manufacturing-practices/ guidance-documents/guidelines-temperature-control-drug-products-storage-trans portation-0069.html.

Higgins J.P.T., & Green S. (2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. The Cochrane Collaboration. See www.cochrane-handbook.org

International Council For Harmonization. (2003). Official web site. Quality guidelines Q1A (R2). Stability testing of new drug substances and products. https://ich.org/page/quality-guidelines.

Kumar D., Singh R.K., & Layek A. (2020). Cold Chain and Its Application. In: Supply Chain Intelligence: Application and Optimization. ed. Springer. Switzerland. 73-90. ISSN 978-3-030-46425-7 (eBook). https://doi.org/10.1007/978-3-030-46425-7

Li J. (2019). Optimal design of transportation distance in logistics supply chain model based on data mining algorithm. Cluster Comput. 22: 3943–3952. https://doi.org/10.1007/s10586-018-2544-x

Malik M.M., Abdallah S., & Ala'raj M. (2016). Data mining and predictive analytics applications for the delivery of healthcare services: a systematic literature review. Big Data Analytics in Operations and Supply Chain Management. 1: 1-26.

Moher D., Liberati A., Tetzlaff J., & Altman D.G., (2009). The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

Moher D., Liberati A., Tetzlaff J., & Altman D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009; 339: 2535

Narayana S.A., Pati R.K., & Vrat P. (2014). Managerial research on the pharmaceutical supply chain – a critical review and some insights for future direction. Journal of Purchasing and Supply Management. 20: 18-40.

Nasrollahi M., & Razmi J. (2021). A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty. Operational Research. 21: 525–552. https://doi.org/10.1007/s12351-019-00459-3

Papageorgiou L.G., Rotstein G.E., & Shah N. (2001). Strategic Supply Chain Optimization for the Pharmaceutical Industries. Ind. Eng. Chem. Res. 40: 275-286.

Pinna R., Carrus P.P., & Marras F. (2015). The drug logistics process: an innovative experience. The TQM Journal. 27: 214-230.

Saint-Lorant G., Souchon J., Guillard P., Barbier-Courteille F., & Hecquard C. (2014). Continuous improvement of the cold chain of medicines in a hospital. Le Pharmacien Hospitalier et Clinicien. 49: 162-175. http://dx.doi.org/10.1016/j.phclin.2013.06.003

Sharma S., & Pai S.S. (2015). Analysis of operating effectiveness of a cold chain model using Bayesian networks. Business Process Management Journal. 21: 722-742.

Singh R.K., Kumar R., & Kumar P. (2016). Strategic issues in pharmaceutical supply chains: a review. International Journal of Pharmaceutical and Healthcare Marketing. 10: 234-257.

Sinha A.K., Verma A.R., Chandrakar A., Khes S.P., Panda P.S., & Dixit S. (2017). Evaluation of cold chain and logistics management practice in drug district of Chhattisgarh: pointer from central India. Int. J. Community Med. Public Health. 4: 390–395. http://dx.doi.org/10.18203/2394-6040.ijcmph20170260

Tsang Y.P., Choy K.L., Wu C.H., Ho G.T.S., Lam C.H.Y., & Koo P.S. (2018). An Internet of Things (IoT)-based risk monitoring system for managing cold supply chain risks. Industrial Management & Data Systems. 118: 1-32. https://doi.org/10.1108/IMDS-09-2017-0384

Wen Z., Liao H., & Ren R., et al. (2019). Cold Chain Logistics Management of Medicine with an Integrated Multi-Criteria Decision-Making Method. Int. J. Environ. Res. Public Health. 16: 4843. https://doi.org/10.3390/ijerph16234843.

Yousefli Z., Nasiri F., & Moselhi O. (2017). Healthcare facilities maintenance management: a literature review, Journal of Facilities Management. 15: 352-375.

Zhang D., & Han T. (2020). Analysis of risk control factors of medical cold chain logistics based on ISM model. Chinese Control And Decision Conference (CCDC). 4222-4227, doi: 10.1109/CCDC49329.2020.9164042.

Descargas

Publicado

13/12/2021

Cómo citar

MANGINI, C. G.; LIMA, N. D. da S.; NÄÄS, I. de A. . Mapeo térmico de rutas en el transporte de productos farmacéuticos utilizando el enfoque de aprendizaje máquina: una revisión sistemática. Research, Society and Development, [S. l.], v. 10, n. 16, p. e170101623665, 2021. DOI: 10.33448/rsd-v10i16.23665. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23665. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías