Mapeamento térmico de rotas no transporte de produtos farmacêuticos usando a abordagem de aprendizagem da máquina: uma revisão sistemática

Autores

DOI:

https://doi.org/10.33448/rsd-v10i16.23665

Palavras-chave:

Cadeia de frio; Medicamentos; Vacina; Modelagem; Controle de qualidade.

Resumo

A rede de frio é fundamental para garantir a qualidade e eficácia dos medicamentos transportados e armazenados. Para isso, é necessário realizar o mapeamento térmico das rotas dos medicamentos transportados entre 15 ° C e 30 ° C, para que a decisão mais assertiva seja tomada sem aumento de custos. Este estudo tem como objetivo identificar os principais fatores que influenciam o mapeamento térmico de produtos farmacêuticos na cadeia de frio e a aplicação da técnica de aprendizado de máquina. O método utilizado para esta revisão sistemática é o Prisma, onde foram analisadas as etapas de identificação, triagem, elegibilidade e inclusão. Após análise de 75 artigos, o resultado mostra que apenas oito artigos foram consistentes com o uso de modelagem na distribuição da cadeia de frio de medicamentos. Assim, pode-se concluir que existe um amplo campo a ser pesquisado quanto ao uso de algoritmos de predição na cadeia de frio de medicamentos e vacinas.

Referências

Brazil. (2020). Collegiate Board Resolution – RDC no. 430 of 08 October 2020. Provides for the Good Distribution, Storage and Transport of Medicines Practices. Issuing agency: ANVISA – Agência Nacional de Vigilância Sanitária. https://www.in.gov.br/en/web/dou/-/resolucao-de-diretoria-colegiada-rdc-n-430-de-8-de-outubro-de-2020-282070593.

Burinskiene, A. (2018). Pharma Supply Chain: Efficiency Modelling Approach. Journal of System and Management Sciences. 8: 65-73

Chaudhuri A., Dukovska-Popovska I., Subramanian N., Chan H.K., & Bai R. (2018). Decision-making in cold chain logistics using data analytics: a literature review. The International Journal of Logistics Management. 29: 839-861. https://doi.org/10.1108/IJLM-03-2017-0059

Chen, Y. H. (2020). Intelligent algorithms for cold chain logistics distribution optimization based on big data cloud computing analysis. J Cloud Comp. 9: 1-12. https://doi.org/10.1186/s13677-020-00174-x

Costa, L. B. M. & Filho, M. G. (2016). Lean healthcare: review, classification and analysis of literature. Production Planning and Control. 27: 823-36.

De Paoli F., Bishara R.H., & van Asselt E.J. (2020). How to define the right ambient temperature range for storage and distribution of pharmaceutical raw materials. Biologicals. 69: 66-69. doi: 10.1016/j.biologicals.2020.12.001. Epub 2020 Dec 17. PMID: 33342746.

Dobrzykowski D., Saboori V., Hong P., & Kim S. (2014). A structured analysis of operations and supply chain management research in healthcar. International Journal of Production Economics. 147: 514-530.

Dou, S., Liu, G., & Yang, Y. (2020). A New Hybrid Algorithm for Cold Chain Logistics Distribution Center Location Problem. IEEE Access, 1–1. doi:10.1109/access.2020.2990988

Fakhimi M., & Probert J. (2013). Operations research within UK healthcare: a review. Journal of Enterprise Information Management. 26: 21-49.

Guimarães, C. M., Carvalho, J. C. D. (2013). Strategic outsourcing: a lean tool of healthcare supply chain management. Strategic Outsourcing: An International Journal. 6: 138-66

Health Canada. (2020). Guidelines for environmental control of drugs during storage and transportation GUI-0069. https://www.canada.ca/en/health-canada/services/d rugs-health-products/compliance-enforcement/good-manufacturing-practices/ guidance-documents/guidelines-temperature-control-drug-products-storage-trans portation-0069.html.

Higgins J.P.T., & Green S. (2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. The Cochrane Collaboration. See www.cochrane-handbook.org

International Council For Harmonization. (2003). Official web site. Quality guidelines Q1A (R2). Stability testing of new drug substances and products. https://ich.org/page/quality-guidelines.

Kumar D., Singh R.K., & Layek A. (2020). Cold Chain and Its Application. In: Supply Chain Intelligence: Application and Optimization. ed. Springer. Switzerland. 73-90. ISSN 978-3-030-46425-7 (eBook). https://doi.org/10.1007/978-3-030-46425-7

Li J. (2019). Optimal design of transportation distance in logistics supply chain model based on data mining algorithm. Cluster Comput. 22: 3943–3952. https://doi.org/10.1007/s10586-018-2544-x

Malik M.M., Abdallah S., & Ala'raj M. (2016). Data mining and predictive analytics applications for the delivery of healthcare services: a systematic literature review. Big Data Analytics in Operations and Supply Chain Management. 1: 1-26.

Moher D., Liberati A., Tetzlaff J., & Altman D.G., (2009). The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

Moher D., Liberati A., Tetzlaff J., & Altman D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009; 339: 2535

Narayana S.A., Pati R.K., & Vrat P. (2014). Managerial research on the pharmaceutical supply chain – a critical review and some insights for future direction. Journal of Purchasing and Supply Management. 20: 18-40.

Nasrollahi M., & Razmi J. (2021). A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty. Operational Research. 21: 525–552. https://doi.org/10.1007/s12351-019-00459-3

Papageorgiou L.G., Rotstein G.E., & Shah N. (2001). Strategic Supply Chain Optimization for the Pharmaceutical Industries. Ind. Eng. Chem. Res. 40: 275-286.

Pinna R., Carrus P.P., & Marras F. (2015). The drug logistics process: an innovative experience. The TQM Journal. 27: 214-230.

Saint-Lorant G., Souchon J., Guillard P., Barbier-Courteille F., & Hecquard C. (2014). Continuous improvement of the cold chain of medicines in a hospital. Le Pharmacien Hospitalier et Clinicien. 49: 162-175. http://dx.doi.org/10.1016/j.phclin.2013.06.003

Sharma S., & Pai S.S. (2015). Analysis of operating effectiveness of a cold chain model using Bayesian networks. Business Process Management Journal. 21: 722-742.

Singh R.K., Kumar R., & Kumar P. (2016). Strategic issues in pharmaceutical supply chains: a review. International Journal of Pharmaceutical and Healthcare Marketing. 10: 234-257.

Sinha A.K., Verma A.R., Chandrakar A., Khes S.P., Panda P.S., & Dixit S. (2017). Evaluation of cold chain and logistics management practice in drug district of Chhattisgarh: pointer from central India. Int. J. Community Med. Public Health. 4: 390–395. http://dx.doi.org/10.18203/2394-6040.ijcmph20170260

Tsang Y.P., Choy K.L., Wu C.H., Ho G.T.S., Lam C.H.Y., & Koo P.S. (2018). An Internet of Things (IoT)-based risk monitoring system for managing cold supply chain risks. Industrial Management & Data Systems. 118: 1-32. https://doi.org/10.1108/IMDS-09-2017-0384

Wen Z., Liao H., & Ren R., et al. (2019). Cold Chain Logistics Management of Medicine with an Integrated Multi-Criteria Decision-Making Method. Int. J. Environ. Res. Public Health. 16: 4843. https://doi.org/10.3390/ijerph16234843.

Yousefli Z., Nasiri F., & Moselhi O. (2017). Healthcare facilities maintenance management: a literature review, Journal of Facilities Management. 15: 352-375.

Zhang D., & Han T. (2020). Analysis of risk control factors of medical cold chain logistics based on ISM model. Chinese Control And Decision Conference (CCDC). 4222-4227, doi: 10.1109/CCDC49329.2020.9164042.

Downloads

Publicado

13/12/2021

Como Citar

MANGINI, C. G.; LIMA, N. D. da S.; NÄÄS, I. de A. . Mapeamento térmico de rotas no transporte de produtos farmacêuticos usando a abordagem de aprendizagem da máquina: uma revisão sistemática. Research, Society and Development, [S. l.], v. 10, n. 16, p. e170101623665, 2021. DOI: 10.33448/rsd-v10i16.23665. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23665. Acesso em: 23 nov. 2024.

Edição

Seção

Engenharias