Posibilidades del uso de diatomace tierra en la composición de materiales dentales: revisión integrativa
DOI:
https://doi.org/10.33448/rsd-v10i16.23846Palabras clave:
Tierra de diatomeas; Materiales dentales; Odontología.Resumen
Introducción: Entre los avances en la ingeniería de materiales con fines odontológicos se encuentra la inclusión de materias primas nuevas y / o subutilizadas para obtener mejores características físicas y, en consecuencia, longevidad clínica de los productos, siendo una de ellas la tierra de diatomeas o la diatomita. Objetivo: recopilar las principales posibilidades de uso de diatomita en la composición de materiales dentales. Metodología: Se realizó una revisión integradora, con búsqueda de alta sensibilidad en las bases de datos: Medline vía PubMed, Cochrane Wiley y Embase, y en el portal: BVS, utilizando los descriptores "Diatomaceous Earth" y "Dental Materials" en inglés, así como el sinónimo "Infusorial Earth" relacionado con el operador booleano "Y". El cribado de los artículos encontrados se realizó mediante la aplicación Rayyan®. Resultados: Se encontraron 51 estudios. Después de leer el título, el resumen y el artículo completo, solo cuatro estudios fueron elegibles para su inclusión. No hubo estudios que discutieran específicamente el uso de tierra de diatomeas en materiales dentales, sin embargo, estos estudios presentan el análisis de materiales dentales y / o biomateriales que contienen diatomita. Los trabajos incluidos fueron publicados entre 2008 y 2014, todos en inglés. Conclusión: La tierra de diatomeas se puede utilizar en diferentes tipos de materiales dentales, principalmente con el objetivo de garantizar mejores propiedades físicas, sin embargo, aún es necesario realizar más investigaciones para analizar sus posibilidades industriales.
Citas
Chain, M. (2013). Materiais Dentários (Série ABENO). Artes Médicas.
Choi, J. H., Kim, M. K., Woo, H. G., Song, H. J., & Park, Y. J. (2011). Modulation of physical properties of polyvinylsiloxane impression materials by filler type combination. Journal of Nanoscience and Nanotechnology, 11(2), 1547–1550. https://doi.org/10.1166/jnn.2011.3332
Ediz, N., Bentli, İ., & Tatar, İ. (2010). Improvement in filtration characteristics of diatomite by calcination. International Journal of Mineral Processing, 94(3–4). https://doi.org/10.1016/j.minpro.2010.02.004
Elias, Z., Poirot, O., Fenoglio, I., Ghiazza, M., Danière, M., Terzetti, F., Darne, C., Coulais, C., Matekovits, I., & Fubini, B. (2006). Surface Reactivity, Cytotoxic, and Morphological Transforming Effects of Diatomaceous Earth Products in Syrian Hamster Embryo Cells. Toxicological Sciences, 91(2). https://doi.org/10.1093/toxsci/kfj177
Guazzato, M., Albakry, M., Ringer, S. P., & Swain, M. v. (2004a). Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dental Materials, 20(5). https://doi.org/10.1016/j.dental.2003.05.003
Guazzato, M., Albakry, M., Ringer, S. P., & Swain, M. v. (2004b). Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dental Materials, 20(5). https://doi.org/10.1016/j.dental.2003.05.002
Guiry, M. (1997). Book reviews. European Journal of Phycology, 32(2). https://doi.org/10.1080/09670269710001737139
Hadjadj-Aoul, O., Belabbes, R., Belkadi, M., & Guermouche, M. H. (2005). Characterization and performances of an Algerian diatomite-based gas chromatography support. Applied Surface Science, 240(1–4). https://doi.org/10.1016/j.apsusc.2004.06.108
Holmes, S. M., Graniel-Garcia, B. E., Foran, P., Hill, P., Roberts, E. P. L., Sakakini, B. H., & Newton, J. M. (2006). A novel porous carbon based on diatomaceous earth. Chemical Communications, 25. https://doi.org/10.1039/b600708b
Koga, T., Minamizato, T., Kawai, Y., Miura, K., I, T., Nakatani, Y., Sumita, Y., & Asahina, I. (2016). Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLOS ONE, 11(1). https://doi.org/10.1371/journal.pone.0147235
López-Álvarez, M., Solla, E. L., González, P., Serra, J., León, B., Marques, A. P., & Reis, R. L. (2009). Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. Journal of Materials Science: Materials in Medicine, 20(5), 1131–1136. https://doi.org/10.1007/s10856-008-3658-0
Losic, D., Mitchell, J. G., & Voelcker, N. H. (2009). Diatomaceous Lessons in Nanotechnology and Advanced Materials. Advanced Materials, 21(29). https://doi.org/10.1002/adma.200803778
Lu, X., Xia, Y., Liu, M., Qian, Y., Zhou, X., Gu, N., & Zhang, F. (2012). Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly. International Journal of Nanomedicine, 7, 2153–2164. https://doi.org/10.2147/IJN.S29851
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1). https://doi.org/10.1186/s13643-016-0384-4
R. Jugdaohsingh. (2007). Silicon And Bone Health. J Nutr Health Aging, 11(2), 99–110.
Şan, O., Gören, R., & Özgür, C. (2009). Purification of diatomite powder by acid leaching for use in fabrication of porous ceramics. International Journal of Mineral Processing, 93(1). https://doi.org/10.1016/j.minpro.2009.04.007
Schröder, H. C., Wang, X. H., Wiens, M., Diehl-Seifert, B., Kropf, K., Schloßmacher, U., & Müller, W. E. G. (2012). Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): Inhibition of osteoclast growth and differentiation. Journal of Cellular Biochemistry, 113(10). https://doi.org/10.1002/jcb.24196
Solla, E. L., Borrajo, J. P., González, P., Serra, J., Chiussi, S., León, B., & López, J. G. (2007). Study of the composition transfer in the pulsed laser deposition of silicon substituted hydroxyapatite thin films. Applied Surface Science, 253(19). https://doi.org/10.1016/j.apsusc.2007.02.116
Souza, M. T. de, Silva, M. D. da, & Carvalho, R. de. (2010). Integrative review: what is it? How to do it? Einstein (São Paulo), 8(1). https://doi.org/10.1590/s1679-45082010rw1134
Wang, X., Schröder, H. C., & Müller, W. E. G. (2014). Enzyme-based biosilica and biocalcite: Biomaterials for the future in regenerative medicine. In Trends in Biotechnology 32(9), 441–447. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2014.05.004
Wiens, M., Wang, X., Schröder, H. C., Kolb, U., Schloßmacher, U., Ushijima, H., & Müller, W. E. G. (2010). The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials, 31(30). https://doi.org/10.1016/j.biomaterials.2010.07.002
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Matheus da Silva Regis; Isabela Pinheiro Cavalcanti Lima; Talita da Silva Pinto ; Heloísa Pereira de Medeiros ; Hiully Karydja Câmara Oliveira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.