Eficacia de hojas de Caryocar brasiliense Camb. y Annona crassiflora Mart. en la reducción de Escherichia coli biotransferida de hojas de Lactuca sativa L. a polipropileno

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i17.24268

Palabras clave:

Adhesión bacteriana; Biopelículas; Contaminación cruzada; Higienización.

Resumen

La actividad antimicrobiana de los extractos de hojas de Caryocar brasiliense y Annona crassiflora se evaluó frente a cepas de Escherichia coli mediante una prueba de sensibilidad por el método de difusión en agar y mediante la evaluación de concentraciones mínimas inhibitorias (CMI) y concentraciones mínimas bactericidas (CMB) mediante la técnica de microdilución seguida de enchapado. La eficacia higienizante de estos extractos para reducir la biotransferencia de células de E. coli de hojas de L. sativa a superficies de polipropileno se evaluó después de un tiempo de exposición de 5 minutos. Todas las cepas fueron sensibles a los antibacterianos y se observó la formación de un halo de inhibición para los extractos en estudio frente a todas las cepas probadas. El extracto de C. brasiliense mostró una mejor acción antimicrobiana contra las cepas de E. coli, con una CMI de 1.09 mg/mL, mientras que la CMI del extracto de A. crassiflora fue de 5.58 mg/mL. No se encontró CMB para extractos de plantas. Las cepas no pudieron formar biopelículas en las condiciones estudiadas, sin embargo, hubo biotransferencia y adhesión de E. coli al polipropileno. Los recuentos más altos de células de E. coli biotransferidas y, en consecuencia, adheridas a los cupones de polipropileno se observaron cuando se inocularon 5 log UFC/mL con un recuento medio de 4,53 ± 0,66 log UFC/cm2. Se verificó que el tratamiento con las soluciones de extracto en las concentraciones mínimas inhibitorias (CMI), redujo totalmente el número de células de E. coli adheridas a los cupones de polipropileno. Los resultados obtenidos indican que el uso de extractos de ambas especies como antibacterianos es prometedor.

Biografía del autor/a

Larissa Lorrane Rodrigues Borges, Universidade Federal de Viçosa

Depto de Tecnologia de Alimentos

 

Citas

Adamczak, A. (2020). Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. Journal of Clinical Medicine, 109(9), 1–17.

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. de M., & Sparovek, G. (2014). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

Andrade, N. J., Bridgeman, T. A., & Zottola, E. A. (1998). Bacteriocidal Activity of Sanitizers against Enterococcus faecium Attached to Stainless Steel as Determined by Plate Count and Impedance Methods. Journal of Food Protection, 61(7), 833–838.

Calo, J. R., Crandall, P. G., O’Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems - A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040

Careli, R. T., Andrade, N. J., Soares, N. F., Júnior, J. I. R., Rosado, M. S., & Bernardes, P. C. (2009). The adherence of Pseudomonas fluorescens to marble , granite , synthetic polymers , and stainless steel. Ciência e Tecnologia de Alimentos, 29(1), 171–176.

Carlie, S. M., Boucher, C. E., & Bragg, R. R. (2020). Molecular basis of bacterial disinfectant resistance. Drug Resistance Updates, 48, 1–9. https://doi.org/10.1016/j.drup.2019.100672

Ceuppens, S., Titze, C., Quadros, R. De, Bartz, S., César, E., & Uyttendaele, M. (2014). Microbiological quality and safety assessment of lettuce production in Brazil. International Journal of Food Microbiology, 181, 67–76. https://doi.org/10.1016/j.ijfoodmicro.2014.04.025

Cunnif, P. (1995). Official methods of AOAC International (16th ed.). AOAC International.

Del-claro, K., & Torezan-silingardi, H. M. (2019). The study of biotic interactions in the Brazilian Cerrado as a path to the conservation of biodiversity. Annals of the Brazilian Academy of Sciences, 91(3), 1–6. https://doi.org/10.1590/0001-3765201920180768

Djipa, C. D., Delme, M., & Quetin-Leclercq, J. (2000). Antimicrobial activity of bark extracts of Syzygium jambos (L.) Alston (Myrtaceae). Journal of Ethnopharmacology, 71, 307–313.

Dušková, M., Šedo, O., Kšicová, K., Zdráhal, Z., & Karpíšková, R. (2012). Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. International Journal of Food Microbiology, 159, 107–114. https://doi.org/10.1016/j.ijfoodmicro.2012.07.029

Feltes, M. M. C., Arisseto-Bragotto, A. P., & Block, J. M. (2017). Food quality, food-borne diseases, and food safety in the Brazilian food industry. Food Quality and Safety, 1(1), 13–27. https://doi.org/10.1093/fqs/fyx003

Flemming, H., Wingender, J., Szewzyk, U., Steinberg, P., & Rice, S. A. (2016). Biofilms : an emergent form of bacterial life. Nature Reviews, 14(9), 563–575. https://doi.org/10.1038/nrmicro.2016.94

Franco, F. D., Tranchida, G., Pupillo, D., Ghersi, G., Cin, P., Virtanen, S., & Santamaria, M. (2021). Effect of E. coli Biofilm formation and removal on passive films on AISI 316L during fermentation processes. Corrosion Science, 1–31. https://doi.org/10.1016/j.corsci.2021.109430

Freiwald, A., & Sauer, S. (2009). Phylogenetic classification and identification of bacteria by mass spectrometry. Nature Protocols, 4(5), 732–742. https://doi.org/10.1038/nprot.2009.37

Galié, S., García-gutiérrez, C., Miguélez, E. M., Villar, C. J., Lombó, F., & Bonaventura, G. Di. (2018). Biofilms in the Food Industry : Health Aspects and Control Methods. Frontiers in Microbiology, 9, 1–18. https://doi.org/10.3389/fmicb.2018.00898

Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S. R. (2018). Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Frontiers in Microbiology, 9, 1–9. https://doi.org/10.3389/fmicb.2018.01639

Górniak, I., Bartoszewski, R., & Króliczewski, J. (2018). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev., 18, 241–272. https://doi.org/10.1007/s11101-018-9591-z

Kannan, M., Rajarathinam, K., Venkatesan, S., Dheeba, B., & Maniraj, A. (2017). Silver Iodide nanoparticles as an antibiofilm agent - A case study on gram-negative biofilm-forming bacteria. In A. Ficai & A. M. Grumezescu (Eds.), Nanostructures for Antimicrobial Therapy (1st ed., pp. 435–456). Elsevier. https://doi.org/10.1016/B978-0-323-46152-8.00019-6

Klančnik, A., Piskernik, S., Jeršek, B., & Možina, S. S. (2010). Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of Microbiological Methods, 81, 121–126. https://doi.org/10.1016/j.mimet.2010.02.004

Koo, O., Martin, E. M., Story, R., Lindsay, D., Ricke, S. C., & Crandall, P. G. (2013). Comparison of cleaning fabrics for bacterial removal from food-contact surfaces. Food Control, 30(1), 292–297. https://doi.org/10.1016/j.foodcont.2012.06.008

Kornacki, J. L., & Johnson, J. L. (2001). Enterobacteriaceae, coliforms, and Escherichia coli as quality and safety indicators. In F. P. Downes & K. Ito (Eds.), Compendium of Methods for the Microbiological Examination of Foods (4th ed., pp. 69–82). APHA.

Kregiel, D. (2014). Advances in biofilm control for food and beverage industry using organo-silane technology : A review. Food Control, 40, 32–40. https://doi.org/10.1016/j.foodcont.2013.11.014

Lima, P. M., São, J. F. B., Andrade, N. J., Clarissa, A., Pires, S., & Ferreira, S. O. (2013). Interaction between natural microbiota and physicochemical characteristics of lettuce surfaces can influence the attachment of Salmonella Enteritidis. Food Control, 30(1), 157–161. https://doi.org/10.1016/j.foodcont.2012.06.039

Lopes, T. da C., Gonçalves, J. de R. S., Souza, N. S., Moraes, D. F. C., Amaral, F. M. M. do, & Rosa, I. G. (2011). Avaliação moluscicida e perfil fitoquímico das folhas de Caryocar brasiliense Camb. Cadernos de Pesquisa, 18(3), 23–30.

Luna-Guevara, J. J., Arenas-Hernandez, M. M. P., Peña, C. M. de la, Silva, J. L., & Luna-Guevara, M. L. (2019). The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. International, 2019, 1–10.

Machado, A. R. T., Ferreira, S. R., Medeiros, F. da S., Fujiwara, R. T., Filho, J. D. de S., Santos, L. P., & Pimenta. (2015). Nematicidal activity of Annona crassiflora leaf extract on Caenorhabditis elegans. Parasites & Vectors, 8, 1–5. https://doi.org/10.1186/s13071-015-0708-6

Malheiros, S., Tavares, C., Casarin, L. S., Serraglio, L., & Tondo, E. C. (2010). Evaluation of growth and transfer of Staphylococcus aureus from poultry meat to surfaces of stainless steel and polyethylene and their disinfection. Food Control, 21(3), 298–301. https://doi.org/10.1016/j.foodcont.2009.06.008

Morais-costa, F., Bastos, G. A., Soares, A. C. M., Costa, E. G. L., Vasconcelos, V. O., Oliveira, N. J. F., Braga, F. C., Duarte, E. R., & Lima, W. S. (2016). Veterinary Parasitology In vitro and in vivo action of Piptadenia viridiflora ( Kunth ) Benth against Haemonchus contortus in sheep. Veterinary Parasitology, 223, 43–49. https://doi.org/10.1016/j.vetpar.2016.04.002

Morais, H. L. M. do N., Feitosa, T. C., Rodrigues, J. G. M., Lira, M. G. S., Nogueira, R. A., Luz, T. R. S. A., Silva-Souza, N., Lima, N. M., Andrade, T. de J. A. dos S., & Miranda, G. S. (2020). Hydroalcoholic extract of Caryocar brasiliense Cambess . leaves affect the development of Aedes aegypti mosquitoes. Journal of the Brazilian Society of Tropical Medicine, 53, 1–7.

Nahar, S., Ha, A. J., Byun, K., & Hossain, I. (2021). Efficacy of flavourzyme against Salmonella Typhimurium , Escherichia coli, and Pseudomonas aeruginosa biofilms on food-contact surfaces. International Journal of Food Microbiology, 336, 1–11. https://doi.org/10.1016/j.ijfoodmicro.2020.108897

Oliveira, C. da C., Matos, N. A. de, Veloso, C. de C., Lage, G. A., Santos, L. P., Pimenta, Duarte, I. D. G., Romero, T. R. L., Klein, A., & Perez, A. de C. (2018). Anti-inflammatory and antinociceptive properties of the hydroalcoholic fractions from the leaves of Annona crassiflora Mart . in mice. Inflammopharmacology, 27, 397–408. https://doi.org/10.1007/s10787-017-0426-0

Paula-Junior, W. de, Rocha, F. H., Donatti, L., Fadel-Picheth, C. M. T., & Weffort-Santos, A. M. (2006). Leishmanicidal, antibacterial, and antioxidant activities of Caryocar brasiliense Cambess leaves hydroethanolic extract. Brazilian Journal of Pharmacognosy, 16, 625–630.

Pinho, L. de, Souza, P. N. S., Sobrinho, E. M., Almeida, A. C. de, & Martins, E. R. (2012). Atividade antimicrobiana de extratos hidroalcoolicos das folhas de alecrim- pimenta, aroeira, barbatimão, erva baleeira e do farelo da casca de pequi. Ciência Rural, 42(2), 326–331.

Ribeiro, I. C. D. O., Mariano, E. G. A., Careli, R. T., Morais-costa, F., Anna, F. M. D. S., Pinto, M. S., Souza, M. R. De, & Duarte, E. R. (2018). Plants of the Cerrado with antimicrobial effects against Staphylococcus spp . and Escherichia coli from cattle. BMC Veterinary Research, 14, 1–10. https://doi.org/10.1186/s12917-018-1351-1

Rocha, C. R., Careli, R. T., Silva, R. P., Almeida, A. C. de, Martins, E. R., Oliveira, E. M. B., & Duarte, E. R. (2014). Óleo essencial de Rosmarinus officinalis L. como sanitizante natural para controle de bactérias sésseis em superfície utilizada para corte de alimentos. Rev Inst Adolfo Lutz, 73(4), 338–344. https://doi.org/10.18241/0073-98552014731624

Rossoni, E. M. M., & Gaylarde, C. C. (2000). Comparison of sodium hypochlorite and peracetic acid as sanitising agents for stainless steel food processing surfaces using epifluorescence microscopy. International Journal of Food Microbiology, 61, 81–85.

Sanchez-Vizuete, P., Orgaz, B., Aymerich, S., Coq, D. Le, & Briandet, R. (2015). Pathogens protection against the action of disinfectants in multispecies biofilms. Frontiers in Microbiology, 6, 1–12. https://doi.org/10.3389/fmicb.2015.00705

Vidács, A., Kerekes, E., Rajkó, R., Petkovits, T., Alharbi, N. S., Khaled, J. M., Vágvölgyi, C., & Krisch, J. (2018). Optimization of essential oil-based natural disinfectants against Listeria monocytogenes and Escherichia coli biofilms formed on polypropylene surfaces. Journal of Molecular Liquids, 255, 257–262. https://doi.org/10.1016/j.molliq.2018.01.179

Wang, Y., Liang, Z., Liao, X., Zhou, C., Xie, Z., Zhu, S., & Wei, G. (2019). Identification of C‑glycosyl flavones by high performance liquid chromatography electrospray ionization mass spectrometry and quantification of five main C‑glycosyl flavones in Flickingeria fimbriata. BMC Chemistry, 13(94), 1–20. https://doi.org/10.1186/s13065-019-0616-5

Weerarathne, P., Payne, J., Saha, J., Kountoupis, T., Jadeja, R., & Jaroni, D. (2021). Evaluating the efficacy of sodium acid sulfate to reduce Escherichia coli O157 : H7 and its biofilms on food-contact surfaces. LWT - Food Science and Technology, 139, 1–7. https://doi.org/10.1016/j.lwt.2020.110501

Descargas

Publicado

22/12/2021

Cómo citar

BORGES, L. L. R. .; GUIMARÃES, A. D. B. .; MORAIS-COSTA, F.; DUARTE, E. R.; MARTINS, M. .; CARELI, R. T. . Eficacia de hojas de Caryocar brasiliense Camb. y Annona crassiflora Mart. en la reducción de Escherichia coli biotransferida de hojas de Lactuca sativa L. a polipropileno. Research, Society and Development, [S. l.], v. 10, n. 17, p. e124101724268, 2021. DOI: 10.33448/rsd-v10i17.24268. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24268. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas