Influencia del diseño de la cavidad de acceso endodóntico y la técnica de restauración en la eliminación de tejido duro y la resistencia a la fractura de premolares inferiores

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.24575

Palabras clave:

Preparación del conducto radicular; Fuerza flexible; Microtomografía de rayos X; Restauración dental permanente.

Resumen

Este estudio evaluó la influencia del acceso tradicional (TradAC) y conservador (ConsAC) con diferentes técnicas restauradoras con respecto al porcentaje de tejido duro removido (% TDR) y la resistencia a la fractura de premolares inferiores. Se escanearon 45 premolares con microtomografía computarizada y se dividieron en cuatro grupos según el acceso (TradAC o ConsAC) y la técnica restauradora: resina compuesta (RC) o perno de fibra (PF) + RC. Después de la preparación de los dientes, fueron escaneados de vuelta para determinar el aumento del volumen y el% HTR de la corona y del conducto radicular. Luego de la restauración, se registró la carga en el momento de la fractura. Los datos se analizaron estadísticamente utilizando ANOVA de una vía y prueba post-hoc de Tukey, ANOVA de medida repetida y pruebas de chi-cuadrado (P <0,05). TradAC (RC o PF) dio como resultado un aumento (Δ%) del volumen del canal de la raíz y hasta un 14 mm% de tejido duro eliminado en comparación con ConsAC (RC o PF). TradAC + PF eliminó un mayor porcentaje de tejido duro de la corona en comparación con TradAC + RC. El porcentaje de tejido duro eliminado en la corona en los grupos ConsAC fue estadísticamente más bajo que en los grupos TradAC. El grupo control mostró mayor resistencia que todos los grupos experimentales, sin diferencias entre estos últimos. Los patrones de fracturas restaurables fueron más frecuentes. Las cavidades de acceso endodóntico tradicionales eliminaron un mayor porcentaje de dentina que las cavidades de acceso endodóntico conservadoras. Sin embargo, no se observaron diferencias en la resistencia a la fractura. Las restauraciones que utilizan resina compuesta o perno de fibra asociado con resina compuesta mostraron resultados similares de resistencia a la fractura.

Citas

Ahmed, H. M. A.; Versiani, M. A.; De-Deus, G. & Dummer, P. M. H. (2017). A new system for classifying root and root canal morphology. International Endodontic Journal, 50 (8), 761–770.

Asundi, A. & Kishen, A. (2001). Advanced digital photoelastic investigations on the tooth-bone interface. Journal of Biomedical Optics, 6 (2), 224–230.

Augusto, C. M.; Barbosa, A. F. A.; Guimarães, C. C.; Lima, C. O.; Ferreira, C. M.; Sassone, L. M. & Silva, E. J. N. L. (2020). A laboratory study of the impact of ultraconservative access cavities and minimal root canal tapers on the ability to shape canals in extracted mandibular molars and their fracture resistance. International Endodontic Journal, 53 (11), 1516-1529.

Chlup, Z.; Zizka, R.; Kania, J. & Pribyl, M. (2017). Fracture behavior of teeth with conventional and mini-invasive access cavity designs. Journal of the European Ceramic Society, 37 (14), 4423–4429.

Clark, D. & Khademi, J. (2010). Modern molar endodontic access and directed dentin conservation. Dental Clinics of North America, 54 (2), 249–273.

D’Arcangelo, C.; De Angelis, F.; Vadini, M.; Zazzeroni, S.; Ciampoli, C. & D’Amario, M. (2008). In vitro fracture resistance and deflection of pulpless teeth restored with fiber posts and prepared for veneers. Journal of Endodontics, 34 (7), 838–841.

De Rose, L.; Krejci, I. & Bortolotto, T. (2015). Immediate endodontic access cavity sealing: fundamentals of a new restorative technique. Odontology, 103 (3), 280-285.

De-Deus, G.; Carvalhal, J. C. A.; Belladonna, F. G.; Silva, E. J. N. L.; Lopes, R. T.; Moreira Filho, R. E.; Souza, E. M.; Provenzano, J. C. & Versiani, M. A. (2017). Dentinal Microcrack Development After Canal Preparation: A Longitudinal in Situ Micro-computed Tomography Study Using a Cadaver Model. Journal of Endodontics, 43 (9), 1553-1558.

De-Deus, G.; Simões-Carvalho, M.; Belladonna, F. G.; Versiani, M. A.; Silva, E. J. N. L.; Cavalcante, D. M.; Souza, E. M.; Johnsen, G. F.; Haugen, H. J. & Paciornik, S. (2020). Creation of well-balanced experimental groups for comparative studies of endodontic laboratory: a new proposal based on micro-CT and in silico methods. International Endodontic Journal, 53 (7), 974-985.

Fadag, A.; Negm, M.; Samran, A.; Samran, A.; Ahmed, G.; Alqerban, A. & Özcan, M. (2018). Fracture Resistance of Endodontically Treated Anterior Teeth Restored with Different Post Systems: An In Vitro Study. European Endodontic Journal, 3 (3), 174-178.

Gillen, B. M.; Looney, S. W.; Gu, L. S.; Loushine, B.A.; Weller, R. N.; Loushine, R. J.; Pashley, D. H.; Tay, F. R. (2011). Impact of the quality of coronal restoration versus the quality of root canal fillings on success of root canal treatment: a systematic review and meta-analysis. Journal of Endodontics, 37 (7), 895-902.

Ikram, O. H.; Patel, S.; Sauro, S.; Mannocci, F. (2009). Micro-computed tomography of tooth tissue volume changes following endodontic procedures and post space preparation. International Endodontic Journal, 42 (12), 1071-1076.

Ingle, J. I. (1985). Endodontic cavity preparation. In: Ingle J, Tamber J, eds. Endodontics, 3rd edn. Philadelphia, PA: Lea & Febiger.

Isufi, A.; Plotino, G.; Grande, N. M., Testarelli, L. & Gambarini, G. (2020). Standardization of Endodontic Access Cavities Based on 3-dimensional Quantitative Analysis of Dentin and Enamel Removed. Journal of Endodontics, 46 (10), 1495-1500.

Krishan, R.; Paqué, F.; Ossareh, A.; Kishen, A.; Dao, T. & Friedman, S. (2014) Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars and molars. Journal of Endodontics, 40 (8), 1160-1166.

Lima, C. O.; Barbosa, A. F. A.; Ferreira, C. M.; Augusto, C. M.; Sassone, L. M.; Lopes, R. T.; Fidel, S. R. & Silva, E. J. N. L. (2020). The impact of minimally invasive root canal preparation strategies on the ability to shape root canals of mandibular molars. International Endodontic Journal, 53 (12), 1680-1688.

Moore, B.; Verdlis, K.; Kishen, A.; Dao, T. & Friedman, S. (2016). Impacts of Contracted Endodontic Cavities on Instrumentation Efficacy and Biomechanical Responses in Maxillary Molars. Journal of Endodontics, 42 (12), 1779-1783.

Nam, S. H.; Chang, H. S.; Min, K. S.; Lee, Y.; Cho, H. W. & Bae, J. M. (2010). Effect of the number of residual walls on fracture resistances, failure patterns, and photoelasticity of simulated premolars restored with or without fiber-reinforced composite posts. Journal of Endodontics, 36 (2), 297–301.

Naumann, M.; Schmitter, M.; Frankenberger, R. & Krastl, G. (2018). "Ferrule Comes First. Post Is Second!" Fake News and Alternative Facts? A Systematic Review. Journal of Endodontics, 44 (2), 212-219.

Neelakantan, P.; Khan, K.; Hei Ng, G. P.; Yip, C. Y.; Zhang, C. & Pan Cheung, G. S. (2018). Does the orifice-directed dentin conservation access design debride pulp chamber and mesial root canal systems of mandibular molars similar to a traditional access design. Journal of Endodontics, 44 (2), 274–279.

Özyürek ,T.; Ülker, Ö.; Demiryürek, E. Ö. & Yılmaz, F. (2018). The Effects of Endodontic Access Cavity Preparation Design on the Fracture Strength of Endodontically Treated Teeth: Traditional Versus Conservative Preparation. Journal of Endodontics, 44 (5), 800-805.

Patel, S. & Rhodes, J. (2007). A practical guide to endodontic access cavity preparation in molar teeth. British Dental Journal, 203 (3), 133–140.

Pereira, R. D. (2018). Impact of conservative endodontic cavity on the preparation and biomechanical behavior of maxilar premolars restored with different materials (PhD Thesis). Ribeirão Preto, SP: Ribeirão Preto University.

Pierrisnard, L.; Bohin, F.; Renault, P. & Barquins, M. (2002). Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis. Journal of Prosthetic Dental, 88 (4), 442-448.

Plotino, G.; Grande, N. M.; Isufi, A.; Ioppolo, P.; Pedulla, E.; Bedini, R.; Gambarini, R. & Testarelli, L. (2017). Fracture Strength of Endodontically Treated Teeth with Different Access Cavity Designs. Journal of Endodontics, 43 (6), 995-1000.

Rover, G.; Belladonna, F. G.; Bortoluzzi, E. A.; De-Deus, G.; Silva, E. J. N. L. & Teixeira, C. S. (2017). Influence of access cavity design on root canal detection, instrumentation efficacy, and fracture resistance assessed in maxillary molars. Journal of Endodontics, 43 (10), 1657–1662.

Sabeti, M.; Kazem, M.; Dianat, O.; Bahrololumi, N.; Beglou, A.; Rahimipour, K. & Dehnavi, F. (2018). Impact of Access Cavity Design and Root Canal Taper on Fracture Resistance of Endodontically Treated Teeth: An Ex Vivo Investigation. Journal of Endodontics, 44 (9), 1402–1406.

Saygili, G.; Uysal, B.; Omar, B.; Ertas, E. T. & Ertas, H. (2018). Evaluation of relationship between endodontic access cavity types and secondary mesiobuccal canal detection. BMC Oral Health, 18 (1), 121.

Schroeder, K. P.; Walton, R. E. & Rivera, E. M. (2002). Straight line access and coronal flaring: effect on canal length. Journal of Endodontics, 28 (6), 474–476.

Shaikh, S. Y. & Shaikh, S. S. (2018). Direct Linear Measurement of Root Dentin Thickness and Dentin Volume Changes with Post Space Preparation: A Cone-Beam Computed Tomography Study. Contemporary Clinical Dentistry, 9 (1), 77-82.

Silva, A. A.; Belladona, F. G.; Rover, G.; Lopes, R. T.; Moreira, E. J. L.; De-Deus, G. & Silva, E. J. N. L. (2020a). Does ultraconservative access affect the efficacy of root canal treatment and the fracture resistance of two rooted maxillary premolars? International Endodontic Journal, 53 (2), 265-275.

Silva, E. J. N. L.; Oliveira, V. B.; Silva, A. A.; Belladonna, F. G.; Prado, M.; Antunes, H. S. & De-Deus, G. (2020b). Effect of access cavity design on gaps and void formation in resin composite restorations following root canal treatment on extracted teeth. International Endodontic Journal, 53 (11), 1540–1548.

Silva, E. J. N. L.; Pinto, K. P.; Ferreira, C. M.; Belladonna, F. G.; De-Deus, G.; Dummer P. M. H. & Versiani, M. A. (2020c). Current status on minimal access cavity preparations: a critical analysis and a proposal for a universal nomenclature. International Endodontic Journal, 53 (12), 1618-1635.

Silva, E. J. N. L.; Rover, G.; Belladonna, F. G.; De-Deus, G.; Teixeira, C. S. & Fidalgo, T. K. S. (2018). Impact of contracted endodontic cavities on fracture resistance of endodontically treated teeth: a systematic review of in vitro studies. Clinical Oral Investigation, 22 (1), 109-118.

Soares, P. V.; Santos-Filho, P. F. C.; Gomide, H. A.; Araujo, C. A.; Martins, L. R. M.; Soares, C. J. (2008). Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part II: strain measurement and stress distribution. Journal of Prosthetic Dental, 99 (2), 114-122.

Suebsawadphatthana, P. & Leevailoj, C. (2019). Fracture Resistance of Endodontically Treated Premolars with Deep Cervical Lesions Restored with and without Posts in Different Restorations. Journal of the Dental Association of Thailand 69, 151-161.

Trushkowsky, R. D. (2014). Restoration of endodontically treated teeth: criteria and technique considerations. Quintessence International, 45 (7), 557-567.

von Stein-Lausnitz, M.; Bruhnke, M.; Rosentritt, M.; Sterzenbach, G.; Bitter, K.; Frankerberger, R. & Naumann, M. (2018). Direct restoration of endodontically treated maxillary central incisors: post or no post at all?. Clinical Oral Investigation, 23 (1), 381-389.

Yahata, Y.; Masuda, Y. & Komabayashi, T. (2017). Comparison of apical centring ability between incisal-shifted access and traditional lingual access for maxillary anterior teeth. Australian Endodontic Journal, 43 (3), 123-128.

Descargas

Publicado

04/01/2022

Cómo citar

BOSCATTO, R. H. .; PRADO, M.; SILVA, E. J. N. L. .; LIMA, C. O. de .; DE-JESUS-SOARES, A.; FROZONI, M. Influencia del diseño de la cavidad de acceso endodóntico y la técnica de restauración en la eliminación de tejido duro y la resistencia a la fractura de premolares inferiores. Research, Society and Development, [S. l.], v. 11, n. 1, p. e18511124575, 2022. DOI: 10.33448/rsd-v11i1.24575. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24575. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud