Motor generador de ciclo diésel asistido por sistemas de automatización industrial (Industria 4.0)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.24699

Palabras clave:

Biodiesel; Generación de energía; Gases de invernadero.

Resumen

Los combustibles como el biodiésel han ido ganando popularidad como combustible alternativo. El estudio trata de la evaluación del rendimiento y las emisiones de un motor generador que funciona con mezclas de diésel y biodiésel, asistido por un sistema de automatización industrial utilizado en la Industria 4.0. El experimento se llevó a cabo en los laboratorios de la Universidad Estatal de West Paraná. Durante el experimento se evaluó la energía generada, el consumo específico, la eficiencia energética y las emisiones generadas por el grupo electrógeno. Los tratamientos utilizados fueron diesel de petróleo tipo A (D100), cinco mezclas (mezclas) de biodiésel de colza (B5, B10, B15, B20 y B50) y biodiésel puro (B100). Las cargas aplicadas al motor del generador fueron del tipo resistivo 1.0; 1,5; 4,5 y 6,0 kW para cada tipo de combustible. La energía generada siguió aumentando y estable a medida que aumentaba la carga. El mejor resultado de consumo específico fue con diésel (D100), seguido de B10 y B20, ambos para la carga de 4,5 kW. Las emisiones de gas de monóxido de carbono se reducen mientras que las emisiones de dióxido de carbono aumentan con la aplicación de cargas más altas. El biodiésel puro (B100) tiende a tener una mejor eficiencia energética que las mezclas binarias utilizadas cuando se inserta a una carga de 6,0 kW. Los resultados obtenidos demuestran que las mezclas de biodiesel de colza con diesel convencional son una de las posibles soluciones viables para la sustitución parcial del diesel mineral.

Citas

Agarwal, A. K., Gupta, T., Dixit, N., & Shukla, P. C. (2013). Assessment of toxic potential of primary and secondary particulates/ aerosols from biodiesel vis-à-vis mineral diesel fuelled engine. Inhalation Toxicology, 25(6), 325-332. 10.3109/08958378.2013.782515

Aldhaidhawi, M., Chiriac, R., Badescu, V., & Delay, I. (2017). combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review. Renewable and Sustainable Energy Reviews, 73, 178-186. 10.1016/j.rser.2017.01.129

Assefa, Y., Vara, P. V., Foster, C., Wright, Y., Young, S., Bradley, P. … Ciampitti, I. A. (2018). Major management factors determining spring and winter canola yield in North America. Crop Science, 58(1), 1-16. 10.2135/cropsci2017.02.0079

Dharma, S., Haji, M., Chyuan, H., & Hanra, A. (2017). Experimental study and prediction of the performance and exhaust emissions of mixed Jatropha curcas-Ceiba pentandra biodiesel blends in diesel engine using artificial neural networks. Journal of Cleaner Production, 164, 618-633. 10.1016/j.jclepro.2017.06.065

Erdo, S. (2020). Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator. Energy, 207, 118300. 10.1016/j.energy.2020.118300

Gharehghani, A., Mirsalim, M., & Hosseini, R. (2017). Effects of waste fi sh oil biodiesel on diesel engine combustion characteristics and emission. Renewable Energy, 101, 930-936. 10.1016/j.renene.2016.09.045

Hasan, M. A., Janius, R. B., Rashid, U., Taufiq-Yap, Y. H., Yunus, R., Zakaria, R., & Mariah, N. (2015). Performance and exhaust emission characteristics of direct-injection diesel engine fueled with enriched biodiesel. Energy Conversion and Management, 106, 365-372, 2015. 10.1016/j.enconman.2015.09.050

Mohammad, S., Miri, R., Reza, S., Seyedi, M., & Ghobadian, B. (2017). Effects of biodiesel fuel synthesized from non-edible rapeseed oil on performance and emission variables of diesel engines. Journal of Cleaner Production, 142, 3798-3808. 10.1016/j.jclepro.2016.10.082

Nayak, C., Pattanaik, B, P., & Nayak, S. K. (2014). Effect of preheated jatropha oil and jatropha oil methyl ester with producer gas on diesel engine performance. International Journal of Automotive and Mechanical Engineering, 9, 1709-1722. 10.15282/ijame.9.2013.20.0142

No, S. (2011). How vegetable oils and their derivatives affect spray characteristics in ci engines — a review. Atomization and Sprays, 21(1), 87-105. 10.1615/AtomizSpr.v21.i1.60

No, S. (2014). Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines – A review. Fuel, 115, 88-96, 2014. 10.1016/j.fuel.2013.07.001

Noor, C. W. M., Mamat, R., Najafi, G., Yasin, M. H. M., Ihsan, C. K., & Noor, M. M. (2016). Prediction of marine diesel engine performance by using artificial neural network model. Journal of Mechanical Engineering and Sciences, 10(1), 1917-1930. 10.15282/jmes.10.1.2016.15.0183

Qi, D. H., Chen, H., Geng, L. M., & Bian, Y. Z. (2010). Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends. Energy Conversion and Management, 51(12), 2985-2992. 10.1016/j.enconman.2010.06.042

Radha, K., Naga, S., Rajagopal, K., & Nagesh, E. L. (2011). Performance and emission characteristics of a ci engine operated on vegetable oils as alternative fuels. International Journal of Automotive and Mechanical Engineering, 4, 414-427. 10.15282/ijame.4.2011.4.0034

Rahman, M. M., Rasul, M. G., Hassan, N. M. S., Azad, A. K., & Uddin, M. N. (2017). Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine. Environmental Science and Pollution Research, 24(28), 22402-22413. 10.1007/s11356-017-9920-6

Saifuddin, N., Refal, H., & Kumaran, P. (2017). Performance and emission characteristics of micro gas turbine engine fuelled with bioethanol-diesel-biodiesel blends. International Journal of Automotive and Mechanical Engineering, 14(1), 4030-4049. 10.15282/ijame.14.1.2017.16.0326

Sakthivel, G., Nagarajan, G., Ilangkumaran, M., & Bajirao, A. (2014). Comparative analysis of performance , emission and combustion parameters of diesel engine fuelled with ethyl ester of fish oil and its diesel blends. Fuel, 132, 116-124. 10.1016/j.fuel.2014.04.059

Serdar, H., Can, O., & Ozt, E. (2017). Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine. Renewable Energy, 109, 73-82. 10.1016/j.renene.2017.03.017

Severino, A. J. (2017). Metodologia do trabalho científico. São Paulo, SP: Cortez.

Simsek, S. (2020). Effects of biodiesel obtained from Canola, sefflower oils and waste oils on the engine performance and exhaust emissions. Fuel, 265, 117026. 10.1016/j.fuel.2020.117026

Singh, B., Kumar, N., Muk, H. (2012). A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy, 37(1), 616-622. 10.1016/j.energy.2011.10.043

Sundararajan, K., Subbiah, G., & Gomathinayakam, S. (2016). Emission estimation of neat paradise tree oil combustion assisted with superheated hydrogen in a 4-stroke natural aspirated dici engine. Thermal Science, 20, 1137-1145. 10.2298/TSCI16S4137S

Xue, J., Grift, T. E., & Hansen, A. C. (2011). Effect of biodiesel on engine performances and emissions. Renewable and Sustainable Energy Reviews, 15(2), 1098-1116. 10.1016/j.rser.2010.11.016

Yesilyurt, M. K., & Cesur, C. (2020). Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: A parametric optimization study through the Taguchi technique. Fuel, 265, 117025. 10.1016/j.fuel.2020.117025

Publicado

04/01/2022

Cómo citar

SILVEIRA, V. F.; SIQUEIRA, J. A. C. .; SANTOS, R. F. .; CANEPPELE, F. de L. .; DIETER, J.; PRIOR, M.; TOKURA, L. K. .; DEBASTIANI, G.; LEWANDOSKI, C. F. .; REIS, L. da S. . Motor generador de ciclo diésel asistido por sistemas de automatización industrial (Industria 4.0). Research, Society and Development, [S. l.], v. 11, n. 1, p. e20611124699, 2022. DOI: 10.33448/rsd-v11i1.24699. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24699. Acesso em: 19 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas