Análisis genómico y potencial de promoción del crecimiento vegetal de una Serratia marcescens aislada de alimento

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.24799

Palabras clave:

Serratia marcescens; Promoción del crecimiento vegetal; Biotecnología.

Resumen

Un análisis genómico de la posible aplicación de una cepa de Serratia marcescens en la promoción del crecimiento vegetal. Métodos: Se realizó la secuenciación del genoma completo de Serratia marcescens aislada de un queso Minas Frescal. El repertorio genómico revelo una bacteria de interés agrícola y biotecnológico. En los rasgos de promoción del crecimiento de las plantas, destacamos los genes que codifican proteínas posiblemente responsables de la biosíntesis del ácido acético indol fitohormono, compuestos orgánicos que actúan en la absorción de hierro y el sistema de solubilización de fosfato. Los genes que codifican para enzimas como la versátil L-asparaginasa estimulan el desarrollo de semillas y granos y pueden beneficiar a la industria alimentaria debido a un efecto de mitigación sobre la acrilamida y, en particular, tiene aplicaciones médicas como agente quimioterapéutico o es aplicable por sus propiedades antimicrobianas y antiinflamatorias. Además, una diversidad funcional de genes que codifican para la resistencia a diferentes metales y el metabolismo de los genes xenobióticos se puede encontrar en esta cepa, reforzando su potencial biotecnológico. Las enzimas versátiles que pueden ser producidas por Serratia marcescens benefician a las industrias alimentaria, farmacéutica, textil, agronómica y cosmética.  Los sistemas genéticos relevantes de S. marcescens descritos aquí pueden utilizarse para promover el crecimiento y la salud de las plantas y mejorar el medio ambiente. Hasta donde sabemos, este es el primer informe de secuencia del genoma de S. marcescens aislado del queso, con potencial aplicación como promotor del crecimiento vegetal y proporcionando una línea de base para futuros estudios genómicos sobre el desarrollo de esta especie.

Citas

Abdel- Razik, N. E., EL-Baghdady, K. Z., EL-Shatoury, E. H., & G Mohamed, N. (2019). Isolation, optimization, and antitumor activity of l-asparaginase extracted from Pectobacterium carotovorum and Serratia marcescens on human breast adenocarcinoma and human hepatocellular carcinoma cancer cell lines. Asian Journal of Pharmaceutical and Clinical Research, 332–337. https://doi.org/10.22159/ajpcr.2019.v12i2.29646

Abreo, E., & Altier, N. (2019). Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Scientific Reports, 9(1), 46. https://doi.org/10.1038/s41598-018-37118-0

Adeolu, M., Alnajar, S., Naushad, S., & S. Gupta, R. (2016). Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morgane. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5575–5599. https://doi.org/10.1099/ijsem.0.001485

Ahmed, F., Arshad, M., Ditta, A., Hussain, A., Naveed, M., Hasnain, M., & Nazir, Q. (2016). Combining Textile Effluent Wastewater with Organic Fertilizer for Improved Growth and Productivity of Wheat and Soil Health. Journal of Environmental and Agricultural Sciences, 8, 14–20.

Alegria, T. G. P., Meireles, D. A., Cussiol, J. R. R., Hugo, M., Trujillo, M., de Oliveira, M. A., … Netto, L. E. S. (2017). Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite. Proceedings of the National Academy of Sciences, 114(2), E132–E141. https://doi.org/10.1073/pnas.1619659114

Amarsy, R., Pean de Ponfilly, G. ., Benmansour, H. ., Jacquier, H., Cambau, E. ., & Mégarbane, B. (2020). Serratia marcescens outbreak in the intensive care unit during the COVID-19 pandemic: A paradoxical risk? Médecine et Maladies Infectieuses, 50(8), 750–751. https://doi.org/10.1016/j.medmal.2020.05.004

Amin, A. A., Gharib, F. A. E., El-Awadi, M., & Rashad, E.-S. M. (2011). Physiological response of onion plants to foliar application of putrescine and glutamine. Scientia Horticulturae, 129(3), 353–360. https://doi.org/10.1016/j.scienta.2011.03.052

Amin, H., Arain, B. A., Jahangir, T. M., Abbasi, A. R., Mangi, J., Abbasi, M. S., & Amin, F. (2021). Copper (Cu) tolerance and accumulation potential in four native plant species: a comparative study for effective phytoextraction technique. Geology, Ecology, and Landscapes, 5(1), 53–64. https://doi.org/10.1080/24749508.2019.1700671

Araghi, A., Hashemi, S., Sepahi, A. A., Faramarzi, M. A., & Amin, M. (2019). Purification and study of anti-cancer effects of Serratia marcescens serralysin. Iranian Journal of Microbiology, 11(4), 320–327. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/31719964

Bazzi, W., Abou Fayad, A. G., Nasser, A., Haraoui, L.-P., Dewachi, O., Abou-Sitta, G., … Matar, G. M. (2020). Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Frontiers in Microbiology, 11, 68. https://doi.org/10.3389/fmicb.2020.00068

Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., … Xia, F. (2015). RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5(1), 8365. https://doi.org/10.1038/srep08365

Brown, M. E., & Chang, M. C. Y. (2014). Exploring bacterial lignin degradation. Current Opinion in Chemical Biology, 19(1), 1–7. https://doi.org/10.1016/j.cbpa.2013.11.015

Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237–245. https://doi.org/10.1139/w99-143

Cook, S. D. (2019). An Historical Review of Phenylacetic Acid. Plant and Cell Physiology, 60(2), 243–254. https://doi.org/10.1093/pcp/pcz004

Cristina, M., Sartini, M., & Spagnolo, A. (2019). Serratia marcescens Infections in Neonatal Intensive Care Units (NICUs). International Journal of Environmental Research and Public Health, 16(4), 610. https://doi.org/10.3390/ijerph16040610

Damare, V. S., & Kajawadekar, K. G. (2020). A preliminary study on L-asparaginase from mangrove detritus-derived fungi and its application in plant growth promotion – MycoAsia. Retrieved from http://mycoasia.org/a-preliminary-study-on-l-asparaginase-from-mangrove-detritus-derived-fungi-and-its-application-in-plant-growth-promotion/

Das, S. N., Dutta, S., Kondreddy, A., Chilukoti, N., Pullabhotla, S. V. S. R. N., Vadlamudi, S., & Podile, A. R. (2010). Plant Growth-Promoting Chitinolytic Paenibacillus elgii Responds Positively to Tobacco Root Exudates. Journal of Plant Growth Regulation, 29(4), 409–418. https://doi.org/10.1007/s00344-010-9152-1

Davis, J. J., Wattam, A. R., Aziz, R. K., Brettin, T., Butler, R., Butler, R. M., … Stevens, R. (2020). The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Research, 48(D1), D606–D612. https://doi.org/10.1093/nar/gkz943

dos Santos, R. A., Rodríguez, D. M., Ferreira, I. N. da S., de Almeida, S. M., Takaki, G. M. de C., & de Lima, M. A. B. (2021). Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environmental Technology, 1–12. https://doi.org/10.1080/09593330.2021.1910733

Falade, A. O., & Ekundayo, T. C. (2021). Emerging biotechnological potentials of DyP‐type peroxidases in remediation of lignin wastes and phenolic pollutants: a global assessment (2007–2019). Letters in Applied Microbiology, 72(1), 13–23. https://doi.org/10.1111/lam.13392

Forshaw, T. E., Holmila, R., Nelson, K. J., Lewis, J. E., Kemp, M. L., Tsang, A. W., … Furdui, C. M. (2019). Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants, 8(1), 11. https://doi.org/10.3390/antiox8010011

Friman, M. J., Eklund, M. H., Pitkälä, A. H., Rajala-Schultz, P. J., & Rantala, M. H. J. (2019). Description of two Serratia marcescens associated mastitis outbreaks in Finnish dairy farms and a review of literature. Acta Veterinaria Scandinavica, 61(1), 54. https://doi.org/10.1186/s13028-019-0488-7

Gangadharan, A., Jolly, J., & John, N. (2020). Bioprospecting of novel therapeutic agents from marine bacterium; Serratia marcescens. Materials Today: Proceedings, 25, 298–301. https://doi.org/10.1016/j.matpr.2020.01.465

García-Silvera, E. E., Martínez-Morales, F., Bertrand, B., Morales-Guzmán, D., Rosas-Galván, N. S., León-Rodríguez, R., & Trejo-Hernández, M. R. (2018). Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production. Biotechnology and Applied Biochemistry, 65(2), 156–172. https://doi.org/10.1002/bab.1565

Garcia, C. J., Pericleous, A., Elsayed, M., Tran, M., Gupta, S., Callaghan, J. D., … Kadouri, D. E. (2018). Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Scientific Reports, 8(1), 14025. https://doi.org/10.1038/s41598-018-32330-4

Gilmour, M. W., Thomson, N. R., Sanders, M., Parkhill, J., & Taylor, D. E. (2004). The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid, 52(3), 182–202. https://doi.org/10.1016/j.plasmid.2004.06.006

Gong, H., Jiao, Y., Hu, W., & Pua, E.-C. (2005). Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Molecular Biology, 57(1), 53–66. https://doi.org/10.1007/s11103-004-4516-1

Gritsunov, A., Peek, J., Diaz Caballero, J., Guttman, D., & Christendat, D. (2018). Structural and biochemical approaches uncover multiple evolutionary trajectories of plant quinate dehydrogenases. The Plant Journal, 95(5), 812–822. https://doi.org/10.1111/tpj.13989

Guest, R. L., & Raivio, T. L. (2016). Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends in Microbiology, 24(5), 377–390. https://doi.org/10.1016/j.tim.2016.03.001

Gumila, C., Ancelin, M. L., Delort, A. M., Jeminet, G., & Vial, H. J. (1997). Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrobial Agents and Chemotherapy, 41(3), 523–529. https://doi.org/10.1128/AAC.41.3.523

Hawkesford, M. J. (2007). Sulfur and plant ecology: a central role of sulfate transporters in responses to sulfur availability. https://doi.org/10.1007/978-1-4020-5887-5_1

Hodges, T. K., Darding, R. L., & Weidner, T. (1971). Gramicidin-D-stimulated influx of monovalent cations into plant roots. Planta, 97(3), 245–256. https://doi.org/10.1007/BF00389205

Huang, D., Yu, C., Shao, Z., Cai, M., Li, G., Zheng, L., … Zhang, J. (2020). Identification and Characterization of Nematicidal Volatile Organic Compounds from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493. Molecules, 25(3), 744. https://doi.org/10.3390/molecules25030744

Ishii, K., Adachi, T., Imamura, K., Takano, S., Usui, K., Suzuki, K., … Sekimizu, K. (2012). Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*. Journal of Biological Chemistry, 287(43), 36582–36592. https://doi.org/10.1074/jbc.M112.399667

Kacálková, L., Tlustoš, P., & Száková, J. (2009). Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant, Soil and Environment, 55(No. 7), 295–304. https://doi.org/10.17221/100/2009-PSE

Kamran, S., Shahid, I., Baig, D. N., Rizwan, M., Malik, K. A., & Mehnaz, S. (2017). Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat. Frontiers in Microbiology, 8(DEC), 2593. https://doi.org/10.3389/fmicb.2017.02593

Khan, A. R., Park, G.-S., Asaf, S., Hong, S.-J., Jung, B. K., & Shin, J.-H. (2017). Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLOS ONE, 12(2), e0171534. https://doi.org/10.1371/journal.pone.0171534

Knauff, U., Schulz, M., & Scherer, H. W. (2003). Arylsufatase activity in the rhizosphere and roots of different crop species. European Journal of Agronomy, 19(2), 215–223. https://doi.org/10.1016/S1161-0301(02)00035-7

Long, Z.-D., Xu, J.-H., Zhao, L.-L., Pan, J., Yang, S., & Hua, L. (2007). Overexpression of Serratia marcescens lipase in Escherichia coli for efficient bioresolution of racemic ketoprofen. Journal of Molecular Catalysis B: Enzymatic, 47(3–4), 105–110. https://doi.org/10.1016/j.molcatb.2007.04.004

Lv, Y., Jiang, Y., Peng, W., Fang, Y., Dong, W., Zhou, J., … Jiang, M. (2021). Genetic manipulation of non‐solvent‐producing microbial species for effective butanol production. Biofuels, Bioproducts and Biorefining, 15(1), 119–130. https://doi.org/10.1002/bbb.2152

Mahmood, F., Shahid, M., Hussain, S., Shahzad, T., Tahir, M., Ijaz, M., … Babar, S. A. K. (2017). Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity. Bioresource Technology, 235, 176–184. https://doi.org/10.1016/j.biortech.2017.03.098

Melo-Nascimento, A. O. dos S., Sant´Anna, B. M. M., Gonçalves, C. C., Santos, G., Noronha, E., Parachin, N., … Bruce, T. (2020). Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1. PLOS ONE, 15(12), e0243739. https://doi.org/10.1371/journal.pone.0243739

Méndez-Santiago, E. W., Gómez-Rodríguez, O., Sánchez-Cruz, R., Folch-Mallol, J. L., Hernández-Velázquez, V. M., Villar-Luna, E., … Wong-Villarreal, A. (2021). Serratia sp., an endophyte of Mimosa pudica nodules with nematicidal, antifungal activity and growth-promoting characteristics. Archives of Microbiology, 203(2), 549–559. https://doi.org/10.1007/s00203-020-02051-2

Naseem, A., Tabasum, S., Zia, K. M., Zuber, M., Ali, M., & Noreen, A. (2016). Lignin-derivatives based polymers, blends and composites: A review. International Journal of Biological Macromolecules, 93, 296–313. https://doi.org/10.1016/j.ijbiomac.2016.08.030

Parmar, H. Y., & Chakraborty, H. (2016). Effect of siderophore on plant growth promotion. International Journal of Applied and Pure Science and Agriculture, 2(3). Retrieved from https://ijapsa.com/papers/volume-2/issue-3/effect-of-siderophore-on-plan-growth-promotion/

Pavithrra, G., & Rajasekaran, R. (2020). Gramicidin Peptide to Combat Antibiotic Resistance: A Review. International Journal of Peptide Research and Therapeutics, 26(1), 191–199. https://doi.org/10.1007/s10989-019-09828-0

Pedraza, R. O., Motok, J., Salazar, S. M., Ragout, A. L., Mentel, M. I., Tortora, M. L., … Díaz-Ricci, J. C. (2010). Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World Journal of Microbiology and Biotechnology, 26(2), 265–272. https://doi.org/10.1007/s11274-009-0169-1

Peixoto, F. B. S., Peixoto, J. C. D. C., Assunção, E. N. de, Peixoto, E. M., Pereira, J. O., & Astolfi-Filho, S. (2017). Petroleum biodegrading and co-resistance to antibiotics by Serratia marcescens strain isolated in Coari, Amazonas. Acta Scientiarum. Biological Sciences, 39(4), 489. https://doi.org/10.4025/actascibiolsci.v39i4.36223

Perkins, A., Nelson, K. J., Parsonage, D., Poole, L. B., & Karplus, P. A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends in Biochemical Sciences, 40(8), 435–445. https://doi.org/10.1016/j.tibs.2015.05.001

Rames, A. (2020). Predatory Bacteria: A Possible Key for the Lock of Antibiotic Resistance. In Transactions on Science and Technology (Vol. 7). Retrieved from http://tost.unise.org/

Ramesh, S. A., Tyerman, S. D., Gilliham, M., & Xu, B. (2017). γ-Aminobutyric acid (GABA) signalling in plants. Cellular and Molecular Life Sciences, 74(9), 1577–1603. https://doi.org/10.1007/s00018-016-2415-7

Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4–5), 319–339. https://doi.org/10.1016/S0734-9750(99)00014-2

Rouhani, M., Valizadeh, V., Molasalehi, S., & No-Rouzian, D. (2020). Production and Expression Optimization of Heterologous Serra-tiopeptidase. Iranian Journal of Public Health, 931–939. Retrieved from http://ijph.tums.ac.ir/index.php/ijph/article/view/20663

Ryu, C.-M., Choi, H. K., Lee, C.-H., Murphy, J. F., Lee, J.-K., & Kloepper, J. W. (2013). Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166. The Plant Pathology Journal, 29(2), 182–192. https://doi.org/10.5423/PPJ.SI.11.2012.0173

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153

Seo, J.-S., Keum, Y.-S., & Li, Q. (2009). Bacterial Degradation of Aromatic Compounds. International Journal of Environmental Research and Public Health, 6(1), 278–309. https://doi.org/10.3390/ijerph6010278

Sharifi, R., & Ryu, C.-M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany, 122(3), 349–358. https://doi.org/10.1093/aob/mcy108

Shibatani, T., Omori, K., Akatsuka, H., Kawai, E., & Matsumae, H. (2000). Enzymatic resolution of diltiazem intermediate by Serratia marcescens lipase: molecular mechanism of lipase secretion and its industrial application. Journal of Molecular Catalysis B: Enzymatic, 10(1–3), 141–149. https://doi.org/10.1016/S1381-1177(00)00122-3

Silva, C. R., Okuno, N. T., Macedo, V. H. L. de M., Freire, I. D. R., Miller, R. M., & Marin, V. A. (2020). Resistome in gram-negative bacteria from soft cheese in Brazil. Revista de Ciências Médicas e Biológicas, 19(3), 430. https://doi.org/10.9771/cmbio.v19i3.35460

Stauss-Grabo, M., Atiye, S., Le, T., & Kretschmar, M. (2014). Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and candida spp. Pharmazie, 69(11), 838–841. https://doi.org/10.1691/ph.2014.4686

Stiborová, M., Schmeiser, H. ., & Frei, E. (2000). Oxidation of xenobiotics by plant microsomes, a reconstituted cytochrome P450 system and peroxidase: a comparative study. Phytochemistry, 54(4), 353–362. https://doi.org/10.1016/S0031-9422(00)00123-0

Strobel, G. A., Morrison, S. L., & Cassella, M. (2002). Protecting plants from oomycete pathogens by treatment with compositions containing serratamolide and oocydin a from Serratia marcescens. https://doi.org/C07D493/08

Tanizawa, Y., Fujisawa, T., Kaminuma, E., Nakamura, Y., & Arita, M. (2016). DFAST and DAGA: web-based integrated genome annotation tools and resources. Bioscience of Microbiota, Food and Health, 35(4), 173–184. https://doi.org/10.12938/bmfh.16-003

Tanizawa, Y., Fujisawa, T., & Nakamura, Y. (2018). DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics, 34(6), 1037–1039. https://doi.org/10.1093/bioinformatics/btx713

Tiwari, M. (2017). The role of serratiopeptidase in the resolution of inflammation. Asian Journal of Pharmaceutical Sciences, 12(3), 209–215. https://doi.org/10.1016/j.ajps.2017.01.003

Troskie, A. M., de Beer, A., Vosloo, J. A., Jacobs, K., & Rautenbach, M. (2014). Inhibition of agronomically relevant fungal phytopathogens by tyrocidines, cyclic antimicrobial peptides isolated from Bacillus aneurinolyticus. Microbiology, 160(9), 2089–2101. https://doi.org/10.1099/mic.0.078840-0

Wang, J.-Y., Zhou, L., Chen, B., Sun, S., Zhang, W., Li, M., … He, Y.-W. (2015). A functional 4-hydroxybenzoate degradation pathway in the phytopathogen Xanthomonas campestris is required for full pathogenicity. Scientific Reports, 5(1), 18456. https://doi.org/10.1038/srep18456

Wani, P. A., & Irene, O. I. (2013). Screening of Microbes for Their Metal, Antibiotic Resistance and Plant Growth Promoting Activity. Current Research in Bacteriology, 7(1), 22–31. https://doi.org/10.3923/crb.2014.22.31

Xie, Q., Essemine, J., Pang, X., Chen, H., & Cai, W. (2020). Exogenous application of abscisic acid to shoots promotes primary root cell division and elongation. Plant Science, 292, 110385. https://doi.org/10.1016/j.plantsci.2019.110385

Xu, J., Wang, X., & Guo, W. (2015). The cytochrome P450 superfamily: Key players in plant development and defense. Journal of Integrative Agriculture, 14(9), 1673–1686. https://doi.org/10.1016/S2095-3119(14)60980-1

Yang, F., Zhang, F., Li, H., Wu, H., Zhao, H., Cheng, X., … Zhu, J. (2021). Contribution of environmental factors on the distribution of antibiotic resistance genes in agricultural soil. European Journal of Soil Biology, 102, 103269. https://doi.org/10.1016/j.ejsobi.2020.103269

You, S.-H., Zhu, B., Han, H.-J., Wang, B., Peng, R.-H., & Yao, Q.-H. (2015). Phytoremediation of 2,4,6-trinitrotoluene by Arabidopsis plants expressing a NAD(P)H-flavin nitroreductase from Enterobacter cloacae. Plant Biotechnology Reports, 9(6), 417–430. https://doi.org/10.1007/s11816-015-0379-y

Zied, Z., Edahech, A., Rigano, F., Micalizzi, G., Mondello, L., Kharrat, N., … Cacciola, F. (2018). Monoacylglycerol and diacylglycerol production by hydrolysis of refined vegetable oil by‐products using an immobilized lipase from Serratia sp. W3. Journal of Separation Science, 41(23), 4323–4330. https://doi.org/10.1002/jssc.201800432

Descargas

Publicado

07/01/2022

Cómo citar

SILVA, C. R. .; MILLER, R. M.; PEREIRA, B. C.; AVELEDA, L.; MARIN, V. A. Análisis genómico y potencial de promoción del crecimiento vegetal de una Serratia marcescens aislada de alimento. Research, Society and Development, [S. l.], v. 11, n. 1, p. e29611124799, 2022. DOI: 10.33448/rsd-v11i1.24799. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24799. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas