Análise genômica e potencial de promoção de crescimento vegetal de uma Serratia marcescens isolada de alimento
DOI:
https://doi.org/10.33448/rsd-v11i1.24799Palavras-chave:
Serratia marcescens; Promoção de crescimento vegetal; Biotecnologia.Resumo
Análise genômica do potencial de aplicação de uma cepa de Serratia marcescens na promoção de crescimento vegetal. Foi realizado o sequenciamento do genoma completo de Serratia marcescens isolada de queijo Minas Frescal. O repertório genômico revelou uma bactéria de interesse agrícola e biotecnológico. Dentre as características de promoção do crescimento de plantas, destacamos genes que codificam proteínas possivelmente responsáveis pela biossíntese do fitohormônio ácido indol acético, compostos orgânicos que atuam na captação de ferro e o sistema de solubilização de Fosfato. Genes que codificam enzimas como a versátil L-asparaginase estimulam o desenvolvimento de sementes e grãos e podem beneficiar a indústria de alimentos devido ao efeito de mitigação da acrilamida e, notadamente, tem aplicações médicas como agente quimioterápico ou é aplicável por seus agentes antimicrobianos e propriedades anti-inflamatórias. Além disso, uma diversidade funcional de genes que codificam para resistência a diferentes metais e metabolismo de xenobióticos pôde ser encontrada nesta linhagem, reforçando seu potencial biotecnológico. As enzimas versáteis que podem ser produzidas em S. marcescens beneficiam as indústrias alimentícia, farmacêutica, têxtil, agronômica e cosmética. Os sistemas genéticos relevantes de S. marcescens descritos aqui podem ser usados para promover o crescimento e a saúde das plantas e melhorar o meio ambiente. Até onde sabemos, este é o primeiro relato de sequência de genoma de S. marcescens isolado de queijo, com potencial aplicação como promotor de crescimento de plantas e fornecendo uma linha de base para futuros estudos genômicos sobre o desenvolvimento desta espécie.
Referências
Abdel- Razik, N. E., EL-Baghdady, K. Z., EL-Shatoury, E. H., & G Mohamed, N. (2019). Isolation, optimization, and antitumor activity of l-asparaginase extracted from Pectobacterium carotovorum and Serratia marcescens on human breast adenocarcinoma and human hepatocellular carcinoma cancer cell lines. Asian Journal of Pharmaceutical and Clinical Research, 332–337. https://doi.org/10.22159/ajpcr.2019.v12i2.29646
Abreo, E., & Altier, N. (2019). Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Scientific Reports, 9(1), 46. https://doi.org/10.1038/s41598-018-37118-0
Adeolu, M., Alnajar, S., Naushad, S., & S. Gupta, R. (2016). Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morgane. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5575–5599. https://doi.org/10.1099/ijsem.0.001485
Ahmed, F., Arshad, M., Ditta, A., Hussain, A., Naveed, M., Hasnain, M., & Nazir, Q. (2016). Combining Textile Effluent Wastewater with Organic Fertilizer for Improved Growth and Productivity of Wheat and Soil Health. Journal of Environmental and Agricultural Sciences, 8, 14–20.
Alegria, T. G. P., Meireles, D. A., Cussiol, J. R. R., Hugo, M., Trujillo, M., de Oliveira, M. A., … Netto, L. E. S. (2017). Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite. Proceedings of the National Academy of Sciences, 114(2), E132–E141. https://doi.org/10.1073/pnas.1619659114
Amarsy, R., Pean de Ponfilly, G. ., Benmansour, H. ., Jacquier, H., Cambau, E. ., & Mégarbane, B. (2020). Serratia marcescens outbreak in the intensive care unit during the COVID-19 pandemic: A paradoxical risk? Médecine et Maladies Infectieuses, 50(8), 750–751. https://doi.org/10.1016/j.medmal.2020.05.004
Amin, A. A., Gharib, F. A. E., El-Awadi, M., & Rashad, E.-S. M. (2011). Physiological response of onion plants to foliar application of putrescine and glutamine. Scientia Horticulturae, 129(3), 353–360. https://doi.org/10.1016/j.scienta.2011.03.052
Amin, H., Arain, B. A., Jahangir, T. M., Abbasi, A. R., Mangi, J., Abbasi, M. S., & Amin, F. (2021). Copper (Cu) tolerance and accumulation potential in four native plant species: a comparative study for effective phytoextraction technique. Geology, Ecology, and Landscapes, 5(1), 53–64. https://doi.org/10.1080/24749508.2019.1700671
Araghi, A., Hashemi, S., Sepahi, A. A., Faramarzi, M. A., & Amin, M. (2019). Purification and study of anti-cancer effects of Serratia marcescens serralysin. Iranian Journal of Microbiology, 11(4), 320–327. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/31719964
Bazzi, W., Abou Fayad, A. G., Nasser, A., Haraoui, L.-P., Dewachi, O., Abou-Sitta, G., … Matar, G. M. (2020). Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Frontiers in Microbiology, 11, 68. https://doi.org/10.3389/fmicb.2020.00068
Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., … Xia, F. (2015). RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5(1), 8365. https://doi.org/10.1038/srep08365
Brown, M. E., & Chang, M. C. Y. (2014). Exploring bacterial lignin degradation. Current Opinion in Chemical Biology, 19(1), 1–7. https://doi.org/10.1016/j.cbpa.2013.11.015
Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237–245. https://doi.org/10.1139/w99-143
Cook, S. D. (2019). An Historical Review of Phenylacetic Acid. Plant and Cell Physiology, 60(2), 243–254. https://doi.org/10.1093/pcp/pcz004
Cristina, M., Sartini, M., & Spagnolo, A. (2019). Serratia marcescens Infections in Neonatal Intensive Care Units (NICUs). International Journal of Environmental Research and Public Health, 16(4), 610. https://doi.org/10.3390/ijerph16040610
Damare, V. S., & Kajawadekar, K. G. (2020). A preliminary study on L-asparaginase from mangrove detritus-derived fungi and its application in plant growth promotion – MycoAsia. Retrieved from http://mycoasia.org/a-preliminary-study-on-l-asparaginase-from-mangrove-detritus-derived-fungi-and-its-application-in-plant-growth-promotion/
Das, S. N., Dutta, S., Kondreddy, A., Chilukoti, N., Pullabhotla, S. V. S. R. N., Vadlamudi, S., & Podile, A. R. (2010). Plant Growth-Promoting Chitinolytic Paenibacillus elgii Responds Positively to Tobacco Root Exudates. Journal of Plant Growth Regulation, 29(4), 409–418. https://doi.org/10.1007/s00344-010-9152-1
Davis, J. J., Wattam, A. R., Aziz, R. K., Brettin, T., Butler, R., Butler, R. M., … Stevens, R. (2020). The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Research, 48(D1), D606–D612. https://doi.org/10.1093/nar/gkz943
dos Santos, R. A., Rodríguez, D. M., Ferreira, I. N. da S., de Almeida, S. M., Takaki, G. M. de C., & de Lima, M. A. B. (2021). Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environmental Technology, 1–12. https://doi.org/10.1080/09593330.2021.1910733
Falade, A. O., & Ekundayo, T. C. (2021). Emerging biotechnological potentials of DyP‐type peroxidases in remediation of lignin wastes and phenolic pollutants: a global assessment (2007–2019). Letters in Applied Microbiology, 72(1), 13–23. https://doi.org/10.1111/lam.13392
Forshaw, T. E., Holmila, R., Nelson, K. J., Lewis, J. E., Kemp, M. L., Tsang, A. W., … Furdui, C. M. (2019). Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants, 8(1), 11. https://doi.org/10.3390/antiox8010011
Friman, M. J., Eklund, M. H., Pitkälä, A. H., Rajala-Schultz, P. J., & Rantala, M. H. J. (2019). Description of two Serratia marcescens associated mastitis outbreaks in Finnish dairy farms and a review of literature. Acta Veterinaria Scandinavica, 61(1), 54. https://doi.org/10.1186/s13028-019-0488-7
Gangadharan, A., Jolly, J., & John, N. (2020). Bioprospecting of novel therapeutic agents from marine bacterium; Serratia marcescens. Materials Today: Proceedings, 25, 298–301. https://doi.org/10.1016/j.matpr.2020.01.465
García-Silvera, E. E., Martínez-Morales, F., Bertrand, B., Morales-Guzmán, D., Rosas-Galván, N. S., León-Rodríguez, R., & Trejo-Hernández, M. R. (2018). Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production. Biotechnology and Applied Biochemistry, 65(2), 156–172. https://doi.org/10.1002/bab.1565
Garcia, C. J., Pericleous, A., Elsayed, M., Tran, M., Gupta, S., Callaghan, J. D., … Kadouri, D. E. (2018). Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Scientific Reports, 8(1), 14025. https://doi.org/10.1038/s41598-018-32330-4
Gilmour, M. W., Thomson, N. R., Sanders, M., Parkhill, J., & Taylor, D. E. (2004). The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid, 52(3), 182–202. https://doi.org/10.1016/j.plasmid.2004.06.006
Gong, H., Jiao, Y., Hu, W., & Pua, E.-C. (2005). Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Molecular Biology, 57(1), 53–66. https://doi.org/10.1007/s11103-004-4516-1
Gritsunov, A., Peek, J., Diaz Caballero, J., Guttman, D., & Christendat, D. (2018). Structural and biochemical approaches uncover multiple evolutionary trajectories of plant quinate dehydrogenases. The Plant Journal, 95(5), 812–822. https://doi.org/10.1111/tpj.13989
Guest, R. L., & Raivio, T. L. (2016). Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends in Microbiology, 24(5), 377–390. https://doi.org/10.1016/j.tim.2016.03.001
Gumila, C., Ancelin, M. L., Delort, A. M., Jeminet, G., & Vial, H. J. (1997). Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrobial Agents and Chemotherapy, 41(3), 523–529. https://doi.org/10.1128/AAC.41.3.523
Hawkesford, M. J. (2007). Sulfur and plant ecology: a central role of sulfate transporters in responses to sulfur availability. https://doi.org/10.1007/978-1-4020-5887-5_1
Hodges, T. K., Darding, R. L., & Weidner, T. (1971). Gramicidin-D-stimulated influx of monovalent cations into plant roots. Planta, 97(3), 245–256. https://doi.org/10.1007/BF00389205
Huang, D., Yu, C., Shao, Z., Cai, M., Li, G., Zheng, L., … Zhang, J. (2020). Identification and Characterization of Nematicidal Volatile Organic Compounds from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493. Molecules, 25(3), 744. https://doi.org/10.3390/molecules25030744
Ishii, K., Adachi, T., Imamura, K., Takano, S., Usui, K., Suzuki, K., … Sekimizu, K. (2012). Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*. Journal of Biological Chemistry, 287(43), 36582–36592. https://doi.org/10.1074/jbc.M112.399667
Kacálková, L., Tlustoš, P., & Száková, J. (2009). Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant, Soil and Environment, 55(No. 7), 295–304. https://doi.org/10.17221/100/2009-PSE
Kamran, S., Shahid, I., Baig, D. N., Rizwan, M., Malik, K. A., & Mehnaz, S. (2017). Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat. Frontiers in Microbiology, 8(DEC), 2593. https://doi.org/10.3389/fmicb.2017.02593
Khan, A. R., Park, G.-S., Asaf, S., Hong, S.-J., Jung, B. K., & Shin, J.-H. (2017). Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLOS ONE, 12(2), e0171534. https://doi.org/10.1371/journal.pone.0171534
Knauff, U., Schulz, M., & Scherer, H. W. (2003). Arylsufatase activity in the rhizosphere and roots of different crop species. European Journal of Agronomy, 19(2), 215–223. https://doi.org/10.1016/S1161-0301(02)00035-7
Long, Z.-D., Xu, J.-H., Zhao, L.-L., Pan, J., Yang, S., & Hua, L. (2007). Overexpression of Serratia marcescens lipase in Escherichia coli for efficient bioresolution of racemic ketoprofen. Journal of Molecular Catalysis B: Enzymatic, 47(3–4), 105–110. https://doi.org/10.1016/j.molcatb.2007.04.004
Lv, Y., Jiang, Y., Peng, W., Fang, Y., Dong, W., Zhou, J., … Jiang, M. (2021). Genetic manipulation of non‐solvent‐producing microbial species for effective butanol production. Biofuels, Bioproducts and Biorefining, 15(1), 119–130. https://doi.org/10.1002/bbb.2152
Mahmood, F., Shahid, M., Hussain, S., Shahzad, T., Tahir, M., Ijaz, M., … Babar, S. A. K. (2017). Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity. Bioresource Technology, 235, 176–184. https://doi.org/10.1016/j.biortech.2017.03.098
Melo-Nascimento, A. O. dos S., Sant´Anna, B. M. M., Gonçalves, C. C., Santos, G., Noronha, E., Parachin, N., … Bruce, T. (2020). Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1. PLOS ONE, 15(12), e0243739. https://doi.org/10.1371/journal.pone.0243739
Méndez-Santiago, E. W., Gómez-Rodríguez, O., Sánchez-Cruz, R., Folch-Mallol, J. L., Hernández-Velázquez, V. M., Villar-Luna, E., … Wong-Villarreal, A. (2021). Serratia sp., an endophyte of Mimosa pudica nodules with nematicidal, antifungal activity and growth-promoting characteristics. Archives of Microbiology, 203(2), 549–559. https://doi.org/10.1007/s00203-020-02051-2
Naseem, A., Tabasum, S., Zia, K. M., Zuber, M., Ali, M., & Noreen, A. (2016). Lignin-derivatives based polymers, blends and composites: A review. International Journal of Biological Macromolecules, 93, 296–313. https://doi.org/10.1016/j.ijbiomac.2016.08.030
Parmar, H. Y., & Chakraborty, H. (2016). Effect of siderophore on plant growth promotion. International Journal of Applied and Pure Science and Agriculture, 2(3). Retrieved from https://ijapsa.com/papers/volume-2/issue-3/effect-of-siderophore-on-plan-growth-promotion/
Pavithrra, G., & Rajasekaran, R. (2020). Gramicidin Peptide to Combat Antibiotic Resistance: A Review. International Journal of Peptide Research and Therapeutics, 26(1), 191–199. https://doi.org/10.1007/s10989-019-09828-0
Pedraza, R. O., Motok, J., Salazar, S. M., Ragout, A. L., Mentel, M. I., Tortora, M. L., … Díaz-Ricci, J. C. (2010). Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World Journal of Microbiology and Biotechnology, 26(2), 265–272. https://doi.org/10.1007/s11274-009-0169-1
Peixoto, F. B. S., Peixoto, J. C. D. C., Assunção, E. N. de, Peixoto, E. M., Pereira, J. O., & Astolfi-Filho, S. (2017). Petroleum biodegrading and co-resistance to antibiotics by Serratia marcescens strain isolated in Coari, Amazonas. Acta Scientiarum. Biological Sciences, 39(4), 489. https://doi.org/10.4025/actascibiolsci.v39i4.36223
Perkins, A., Nelson, K. J., Parsonage, D., Poole, L. B., & Karplus, P. A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends in Biochemical Sciences, 40(8), 435–445. https://doi.org/10.1016/j.tibs.2015.05.001
Rames, A. (2020). Predatory Bacteria: A Possible Key for the Lock of Antibiotic Resistance. In Transactions on Science and Technology (Vol. 7). Retrieved from http://tost.unise.org/
Ramesh, S. A., Tyerman, S. D., Gilliham, M., & Xu, B. (2017). γ-Aminobutyric acid (GABA) signalling in plants. Cellular and Molecular Life Sciences, 74(9), 1577–1603. https://doi.org/10.1007/s00018-016-2415-7
Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4–5), 319–339. https://doi.org/10.1016/S0734-9750(99)00014-2
Rouhani, M., Valizadeh, V., Molasalehi, S., & No-Rouzian, D. (2020). Production and Expression Optimization of Heterologous Serra-tiopeptidase. Iranian Journal of Public Health, 931–939. Retrieved from http://ijph.tums.ac.ir/index.php/ijph/article/view/20663
Ryu, C.-M., Choi, H. K., Lee, C.-H., Murphy, J. F., Lee, J.-K., & Kloepper, J. W. (2013). Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166. The Plant Pathology Journal, 29(2), 182–192. https://doi.org/10.5423/PPJ.SI.11.2012.0173
Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153
Seo, J.-S., Keum, Y.-S., & Li, Q. (2009). Bacterial Degradation of Aromatic Compounds. International Journal of Environmental Research and Public Health, 6(1), 278–309. https://doi.org/10.3390/ijerph6010278
Sharifi, R., & Ryu, C.-M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany, 122(3), 349–358. https://doi.org/10.1093/aob/mcy108
Shibatani, T., Omori, K., Akatsuka, H., Kawai, E., & Matsumae, H. (2000). Enzymatic resolution of diltiazem intermediate by Serratia marcescens lipase: molecular mechanism of lipase secretion and its industrial application. Journal of Molecular Catalysis B: Enzymatic, 10(1–3), 141–149. https://doi.org/10.1016/S1381-1177(00)00122-3
Silva, C. R., Okuno, N. T., Macedo, V. H. L. de M., Freire, I. D. R., Miller, R. M., & Marin, V. A. (2020). Resistome in gram-negative bacteria from soft cheese in Brazil. Revista de Ciências Médicas e Biológicas, 19(3), 430. https://doi.org/10.9771/cmbio.v19i3.35460
Stauss-Grabo, M., Atiye, S., Le, T., & Kretschmar, M. (2014). Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and candida spp. Pharmazie, 69(11), 838–841. https://doi.org/10.1691/ph.2014.4686
Stiborová, M., Schmeiser, H. ., & Frei, E. (2000). Oxidation of xenobiotics by plant microsomes, a reconstituted cytochrome P450 system and peroxidase: a comparative study. Phytochemistry, 54(4), 353–362. https://doi.org/10.1016/S0031-9422(00)00123-0
Strobel, G. A., Morrison, S. L., & Cassella, M. (2002). Protecting plants from oomycete pathogens by treatment with compositions containing serratamolide and oocydin a from Serratia marcescens. https://doi.org/C07D493/08
Tanizawa, Y., Fujisawa, T., Kaminuma, E., Nakamura, Y., & Arita, M. (2016). DFAST and DAGA: web-based integrated genome annotation tools and resources. Bioscience of Microbiota, Food and Health, 35(4), 173–184. https://doi.org/10.12938/bmfh.16-003
Tanizawa, Y., Fujisawa, T., & Nakamura, Y. (2018). DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics, 34(6), 1037–1039. https://doi.org/10.1093/bioinformatics/btx713
Tiwari, M. (2017). The role of serratiopeptidase in the resolution of inflammation. Asian Journal of Pharmaceutical Sciences, 12(3), 209–215. https://doi.org/10.1016/j.ajps.2017.01.003
Troskie, A. M., de Beer, A., Vosloo, J. A., Jacobs, K., & Rautenbach, M. (2014). Inhibition of agronomically relevant fungal phytopathogens by tyrocidines, cyclic antimicrobial peptides isolated from Bacillus aneurinolyticus. Microbiology, 160(9), 2089–2101. https://doi.org/10.1099/mic.0.078840-0
Wang, J.-Y., Zhou, L., Chen, B., Sun, S., Zhang, W., Li, M., … He, Y.-W. (2015). A functional 4-hydroxybenzoate degradation pathway in the phytopathogen Xanthomonas campestris is required for full pathogenicity. Scientific Reports, 5(1), 18456. https://doi.org/10.1038/srep18456
Wani, P. A., & Irene, O. I. (2013). Screening of Microbes for Their Metal, Antibiotic Resistance and Plant Growth Promoting Activity. Current Research in Bacteriology, 7(1), 22–31. https://doi.org/10.3923/crb.2014.22.31
Xie, Q., Essemine, J., Pang, X., Chen, H., & Cai, W. (2020). Exogenous application of abscisic acid to shoots promotes primary root cell division and elongation. Plant Science, 292, 110385. https://doi.org/10.1016/j.plantsci.2019.110385
Xu, J., Wang, X., & Guo, W. (2015). The cytochrome P450 superfamily: Key players in plant development and defense. Journal of Integrative Agriculture, 14(9), 1673–1686. https://doi.org/10.1016/S2095-3119(14)60980-1
Yang, F., Zhang, F., Li, H., Wu, H., Zhao, H., Cheng, X., … Zhu, J. (2021). Contribution of environmental factors on the distribution of antibiotic resistance genes in agricultural soil. European Journal of Soil Biology, 102, 103269. https://doi.org/10.1016/j.ejsobi.2020.103269
You, S.-H., Zhu, B., Han, H.-J., Wang, B., Peng, R.-H., & Yao, Q.-H. (2015). Phytoremediation of 2,4,6-trinitrotoluene by Arabidopsis plants expressing a NAD(P)H-flavin nitroreductase from Enterobacter cloacae. Plant Biotechnology Reports, 9(6), 417–430. https://doi.org/10.1007/s11816-015-0379-y
Zied, Z., Edahech, A., Rigano, F., Micalizzi, G., Mondello, L., Kharrat, N., … Cacciola, F. (2018). Monoacylglycerol and diacylglycerol production by hydrolysis of refined vegetable oil by‐products using an immobilized lipase from Serratia sp. W3. Journal of Separation Science, 41(23), 4323–4330. https://doi.org/10.1002/jssc.201800432
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Cristiane Rodrigues Silva; Rafael Monção Miller; Bárbara Costa Pereira; Lílian Aveleda; Victor Augustus Marin
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.