Potencial agronómico de cuatro polvos de roca, puros o mezclados, como remineralizantes del suelo

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i17.24828

Palabras clave:

Granulometría; Petrografía; Mineralogía; Química elemental; IN5; Fertilidad del suelo; Producción vegetal.

Resumen

El conocimiento detallado de la composición química, petrográfica y mineralógica y los efectos de la aplicación del polvo de roca en las propiedades químicas del suelo y en la producción de plantas son necesarios para la clasificación de estos materiales como remineralizantes del suelo (RS), según la legislación brasileña. Este estudio tuvo como objetivo evaluar el potencial del polvo de las rocas siltito, tefrito y olivina melilitito, puras o en mezclas, en la mejora de la fertilidad de un Cambissolo y un Nitossolo y en la productividad de la soja y la cebada cultivadas en sucesión, en casa de vegetación. Para ello, se caracterizaron los productos en cuanto a su granulometría, composición química, mineralógica y petrográfica. A partir de estos resultados, se verificó cuáles de estos productos cumplían los requisitos de la Instrucción Normativa número 5 (IN5), del MAPA, para su registro como RS. Los análisis químicos elementales y la granulometría indicaron que todos los productos probados cumplían los requisitos establecidos en la IN5, para su registro como RS. La composición mineral identificada en los análisis petrográficos fue confirmada por los análisis realizados mediante técnicas de difratometria de rayos-X. La roca de olivina melilitito, pura o combinada con siltito presentó mayor potencial agronómico en comparación con los otros polvos, por lo que puede ser admitida como RS. La tefrito, aunque tuvo poca respuesta agronómica en los suelos y cultivos evaluados, también cumple con los requisitos del RS. La siltito cumplía la mayor parte de los requisitos establecidos por el IN5, excepto la superación del contenido máximo de sílice libre (cuarzo), por lo que es probable que no cumpla los requisitos para su clasificación como RS.

Citas

Aguilera, J. G., Zuffo, A. M., Ratke, R. F., Trento, A. C. S., Lima, R. E., Gris, G. A., Morais, K. A. D., Silva, J. X. & Martins, W. C. (2020a). Influencia de dosis de polvo de basalto sobre cultivares de soya. Research, Society and Development, 9, 1-22. DOI: http://dx.doi.org/10.33448/rsd-v9i7.3974

Aguilera, J.G., Goes, R. J., Zuffo, A. M., Ratke, R.F., Silva, N. P., Godoy, M. L. & Erharter, J. F. N. (2020b) Residual effect of rock dust doses after two years of application in maize. Agricultura 4.0, 1, 97-104. DOI: https://doi.org/10.46420/9786599064159cap6

Akinyemi, S.A., Nyakuma, B.B., Jauro, A., Adebayo, O.F., Olaolorun, O.A., Adegoke, A.K., Aturamu, A.O., Adetunji, A., Gitari, W. M. & Mudzielwana, R. (2021) Mineralogy, physicochemical and oxidative thermal analyses of cretaceous coals from the Benue Trough, Nigeria. Energy Geoscience. 2 , 129–135. DOI: https://doi.org/10.1016/j.engeos.2020.07.001

Alovisi, A. M. T., Taques, M. M., Alovisi, A. A., Tokura, L. K., Silva, J. A. M. & Cassol, C. J. (2020a). Rochagem como alternativa sustentável para a fertilização de solos. Revista Gestão e Sustentabilidade Ambiental, 9, 918-932.

Alovisi, A. M. T., Cassol, C. J., Nascimento, J. S., Soares, N. B., Junior, I. R. S., Da Silva, R. S. & Da Silva, J. A. M. (2020). Soil factors affecting phosphorus adsorption in soils of the Cerrado, Brazil. Geoderma Regional, v.22, e00298, 1-7. DOI: https://doi.org/10.1016/j.geodrs.2020.e00298

Basak, B. B., Sarkar, B. & Naidu, R. (2020). Environmentally safe release of plant available potassium and micronutrients from organically amended rock mineral powder. Environmental Geochemistry and Health, 43, 3273-3286. DOI: https://doi.org/10.1007/s10653-020-00677-1.

Basak, B. B., Sarkar, B., Biswas, D.R., Sarkar, S., Sanderson, P. & Naidu, R. (2017). Bio-Intervention of Naturally Occurring Silicate Minerals for Alternative Source of Potassium: Challenges and Opportunities. Elsevier, Advances in Agronomy, 141, 115-145. DOI: https://doi.org/10.1016/bs.agron.2016.10.016

Brindley, G. W. & Brown, G. (1980). Cristal structures of clay minerals and their X ray identification. London: Mineralogical Society.

Casaroli, D. & Lier, Q. J. van. Critérios para determinação da capacidade de vaso. Revista Brasileira de Ciência do Solo, 32, 59-66, 2008. DOI: https://doi.org/10.1590/S0100-06832008000100007

Comissão de Química e Fertilidade do Solo dos Estados do Rio Grande do Sul e de Santa Catarina - CQFS-RS/SC. (2016). Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina.

Cunha, G. O. M., Almeida, J. A., Souza, C. A. & Ernani, P. R. (2019a). Nutritional efficiency and nutrient accumulation of maize cultivated in soils with high Al-KCl content. Journal of Agricultural Science, 1,107-123. DOI: https://doi.org/10.5539/jas.v11n16p107

Duarte, W. M., Mafra, A. L., Foresti, M. M., Piccolla, C. D. & Almeida, J. A. (2013). Potencial de olivina melilitito, granito e sienito na disponibilização de potássio em solos. Revista de Ciências Agroveterinárias, 12, 68-77.

Dunworth, E. A. & Wilson, M. (1998). Olivine melilitites of the SW German Tertiary Volcanic Province: Mineralogy and Petrogenesis. Journal of Petrology, 39, 1805-1836. DOI: https://doi.org/10.1093/petroj/39.10.1805

Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA. (2009). Manual de análises químicas de solos, plantas e fertilizantes.

Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA. (2017). Manual de métodos de análise de solo.

Fazio, G., Guimarães, E. M., Walde, D. W. G., Do Carmo, D. A., Adorno, R. R., Vieira, L. C., Denezine, M., Da Silva, C. B., De Godoy, H. V., Borges, P. C. & Pinho, D. (2019). Mineralogical and Chemical composition of Ediacaran-Cambrian pelitic rocks of the Tamengo and Guaicurus formations, (Corumbá Group- MS, Brazil): stratigraphic positioning and paleoenvironmental interpretations. Journal of South American Earth Sciences, 90, 487-503. DOI: https://doi.org/10.1016/j.jsames.2018.11.025

Ferreira, D. F. (2014). Sisvar: a guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38, 109-112. DOI: https://doi.org/10.1590/S1413-70542014000200001

Ferreira, E. R. N. C., Almeida, J. A. & Mafra, A. L. (2009). Pó de basalto, desenvolvimento e nutrição do feijão comum (Phaseolus vulgaris) e propriedades químicas de um Cambisol Húmico. Revista de Ciências Agroveterinárias, 8, 111-121.

Gómez, L. P., Ramos, C. G., Oliveira, M. L. S. & Silva, L.F.O. (2021). Release kinetics of multinutrients from volcanic rock mining by-products: evidences for their use as a soil remineralizer. Journal of Cleaner Production, 279, 123668. DOI: https://doi.org/10.1016/j.jclepro.2020.123668

Gotz, L. F., Castamann, A., Piovesan, F., Anzolin, B. L., Herek, T. A., Mikoanski, W. M. & Rita, Y. L. (2019). Use of rock powder associated with bovine manure in Latossolo Vermelho cultivated with wheat. Revista Brasileira de Agropecuária Sustentável (RBAS), 9, 131-139. DOI: https://doi.org/10.21206/rbas.v9i2.3464

Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32, 390-999. DOI: https://doi.org/10.1111/sum.12270

Hanisch, A.L., Fonseca, J. A., Junior, A. A. B. & Spagnoli, E. (2013). Efeito de pó de basalto no solo e em culturas anuais durante quatro safras, em sistema de plantio direto. Revista Brasileira de Agropecuária Sustentável, 3, 100-107. DOI: https://doi.org/10.21206/rbas.v3i2.224

Jackson, M. L. (1965). Soil Chemical Analysis. 2 ed. Madison: Department of Soil Science- University of Wisconsin. Advanced Course. 991p. (Mimeografado).

Janney, P. E., Le Roex, A. P., Carlson, R. W. & Viljoen, K. S. A. (2002). Chemical and multi-isotope study of the Western Cape olivine melilitite province, south Africa: implications for the sources of kimberlites and the origin of the HIMU signature in Africa. Journal of Petrology, 43, 2339-2370. DOI: https://doi.org/10.1093/petrology/43.12.2339

Jiang, J., Wang, Y. P., Yu, M., Cao. N. & Yan, J. (2018). Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chemical Geology, 501, 86-94. https://doi.org/10.1016/j.chemgeo.2018.10.009

Júnior, J. J. A., Lazarini, E., Smiljanic, K. B. A., Simon, G. A., Matos, F. S. A., Barbosa, U. R., Silva, V. J. A., Mirand, B. C. & Silva, A. R. (2020). Análise das variáveis tecnológicas na cultura da soja (Glycine max) com utilização de remineralizador de solo como fertilizante. Brazilian Journal of Development, 6, 56835-56847. DOI: https://doi.org/10.34117/bjdv6n8-190

Longo, A. E. D. V., Almeida, J. A., Cunha, G. O. M. & Lazzari, C. J. R. (2021). Mineralogy and genesis of soils developed from ultrabasic and alcaline rocks of Lages Alcaline Complex, Brazil. Revista Brasileira de Ciências Agrárias, 16, 1-12. DOI: https://doi.org/10.5039/agraria.v16i3a9054

Lopes, R. P. & Ulbrich, M. N. C. (2015). Geochemistry of the alkaline volcanic-subvolcanic rocks of the Fernando de Noronha Archipelago, southern Atlantic Ocean. Brazilian Journal of Geology, 45, 307-333. DOI: https://doi.org/10.1590/23174889201500020009

Lungu, O. I. M. & Dynoodt, R. F. P. (2008). Acidification from long-term use urea and its effect on selected soil properties. African Journal of Food Agriculture Nutrition and Development, 8, 63-76. DOI: https://doi.org/10.4314/AJFAND.V8I1.19180

Manning, D. A. C. & Theodoro, S. H. (2020). Enabling food security through use of local rocks and minerals. The Extractive Industries and Society, 7, 480–487. DOI: https://doi.org/10.1016/j.exis.2018.11.002

Ministério da Agricultura, Pecuária e Abastecimento - MAPA. (2016). Instrução Normativa Nº 5, de 10 de março de 2016. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-5-de-10-3-16-remineralizadores-e-substratos-para-plantas.pdf Acesso em: 27/11/2021.

Marchi, G., Guelfi-Silva, D. R., Malaquias, J. V., Guilherme, L. R. G., Spehar, C. R. & Martins, E. S. (2020). Solubility and availability of micronutrients extracted from silicate agrominerals. Pesquisa Agropecuária Brasileira, 55, 1-12. DOI: https://doi.org/10.1590/S1678-3921.pab2020.v55.00807

Marques, M. L. S., Jesus, J. M. I., Santos, W. M., Silva, J. W. G., Martins, A. L. S. & Marques, V. S. (2020). Agronomic efficiency of fertilizers based on humus, rock powder, and mineral on soybean yield in Paraguay-PY. Revista de Agricultura Neotropical, 7, 90-96. DOI: https://doi.org/10.32404/rean.v7i3.4364

Martins, V., Gonçalves, A. S. F., Marchi, G., Guilherme, L. R. G. & Martins, E. S. (2015). Solubilização de potássio em misturas de verdete e calcário tratadas termoquimicamente. Pesquisa Agropecuária Tropical, 45, 66-72.

Melo, V. F., Uchôa, S. C. P., Dias, F. O. & Barbosa, G. F. (2012). Doses de basalto moído nas propriedades químicas de um Latossolo Amarelo distrófico da savana de Roraima. Acta Amazônica, 42, 471-476. DOI: https://doi.org/10.1590/S0044-59672012000400004

Miranda, C. C. B., Florentino, L. A., De Rezende, A. V., Nogueira, D. A., Leite, R. F. & Naves, L. P. (2018). Desenvolvimento de Urochloa brizantha adubada com fonolito e inoculada com bactérias diazotróficas solubilizadoras de potássio. Sociedade de Ciências Agrárias de Portugal, v.41, n.3 p.625-632. DOI: https://doi.org/10.19084/RCA17011

Mumbach, G. L.; Gatiboni, L. C.; Dall’Orsoletta, D. J.; Schmitt, D. E.; Pessotto, P. P. &Oliveira, C. M. B. (2020). Phosphorus extraction with soil test methods affected by soil P sorption capacity. Journal of Soil Science and Plant Nutrition, 20, 1882-1890. DOI: https://doi.org/10.1007/s42729-020-00259-1

Murphy, J. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural Waters. Analytica Chimica Acta, 27, 31-36. DOI: https://doi.org/10.1016/S0003-2670(00)88444-5

Nogueira, T. A. R., Miranda, B. G., Jalal, A., Lessa, L. G. F., Filho, M. C. M. T., Marcante, N. C., Abreu-Junior, C. H., Jani, A. D., Capra, G. F., Moreira, A. & Martins, E. S. (2021). Nepheline syenite and phonolite as alternative potassium sources for maize. Agronomy, 11, 7, 1385. DOI: https://doi.org/10.3390/agronomy11071385

Oelkers, E. H., Declersq, J., Saldi, G. D., Gislason, S. R. & Schott, J. (2018). Olivine dissolution rates: A critical review. Chemical Geology, 500, 1-19. DOI: https://doi.org/10.1016/j.chemgeo.2018.10.008

Pereira, M. B., Véras, M. L. M., De Lima, N. R., Dos Santos, L. G. & Dias, T. J. (2019). Bovine manure and rock powder and their influences on the chemical characteristics of a Latossolo soil type (Yellow Oxisols) under butter kale (Brassica oleracea L. var. acephala) cultivation. Revista Colombiana de Ciências Hortícolas, 12, 448-457. DOI: https://doi.org/10.17584/rcch.2019vl3i3.10597

Pereira, M. B., Dias, T. J., Lima, N. R., Justino, E. S., Oliveira, D. S. &Martins-Veras, M. L. (2020). Plant growth and yield of butter kale (Brassica oleracea L. var. acephala), as influenced by the combined application of bovine manure and rock powder. Acta Agronômica, 69, 38-45. DOI: https://doi.org/10.15446/acag.v69n1.75174

Ramos, C. G., De Medeiros, D. D. S., Gomez, L., Oliveira, L. F. S., Schneider, I. A. H. & Kautzmann, R. M. (2019). Evaluation of soil Re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Natural Resources Research, 29, 1583–1600. DOI: https://doi.org/10.1007/s11053-019-09529-x

Ramos, C. G., Hower, J. C., Blanco, E., Oliveira, M. L. S. & Theodoro, S. H. (2021). Possibilities of using silicate rock powder: An overview. Geoscience Frontiers, 1-11. DOI: https://doi.org/10.1016/j.gsf.2021.101185

Renforth, P., Pogge Von Strandmann, P. A. E. & Henderson, G. M. (2015). The dissolution of olivine added to soil: implications for enhanced weathering. Applied Geochemistry, v.61, p.109-118. DOI: https://doi.org/10.1016/j.apgeochem.2015.05.016

Ribeiro, J. & Flores, D. (2021). Occurrence, leaching, andmobility ofmajor and trace elements in a coal mining waste dump: the case of Douro Coalfield, Portugal. Energy Geoscience, 2 (2), 121–128. DOI: https://doi.org/10.1016/j.engeos.2020.09.005.

Souza, F. N. S., De Oliveira, C. G., Martins, E. S. & Alves, J. M. (2017). Efeitos condicionador nutricional de um remineralizador de solos obtido de resíduos de mineração. Revista Agri-Environmental Sciences, 3, 1-12.

Streckeisen, A. L. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitite rocks. Recommendations and Suggestions. Neues Jahrbuch für Mineralogie, 141, 1- 14.

Tavares, L. F., De Carvalho, A. M. X., Camargo, L. G. B., Pereira, S. G. F. & Cardoso, I. M. (2018). Nutrients release from powder phonolite mediated by bioweathering actions. International Journal of Recycling of Organic Waste in Agriculture, 7, 89-98. DOI: https://doi.org/10.1007/s40093-018-0194-x

Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H. & Volkweiss, S. J. (1995). Análise de solo plantas e outros materiais. 2. ed. Porto Alegre: Universidade Federal do Rio Grande do Sul. (Boletim técnico, 5).

Theodoro, S. H., Medeiros, F.P., Ianniruberto, M. & Jacobson, T. K. B. (2020). Soil remineralization and recovery of degraded areas: an experience in the tropical region. Journal of South American Earth Sciences, 107, 103014 https://doi.org/10.1016/j.jsames.2020.103014.

Vanda-Sebastião, J. S., Ferrer-Castilho, A., Costa-Quizembe, J. & Carvalho-Zacarias, E. F. (2019). Aplicação de doses crescentes de calcário por incubação nos solos da chianga-huambo, Angola. Revista Cubana de Química, 31, 258-282.

Whittig, L. D. & Allardice, W. R. (1986). X-ray diffraction techniques. In: KLUTE, A. (ed). Methods of soil analysis. Part 1. Physical and mineralogical methods. 2 ed. Madison: Soil Science Society of America, 331p.

Zhang, Y., Zhang, S., Wang, R., Cai, J., Zhang, Y., LI, H., Huang, S. & Jiang, Y. (2016). Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Science Plant Nutrition, 62, 432-439. DOI: https://doi.org/10.1080/00380768.2016.1226685

Descargas

Publicado

20/12/2021

Cómo citar

CUNHA, G. O. de M. .; ALMEIDA, J. A. de. Potencial agronómico de cuatro polvos de roca, puros o mezclados, como remineralizantes del suelo. Research, Society and Development, [S. l.], v. 10, n. 17, p. e169101724828, 2021. DOI: 10.33448/rsd-v10i17.24828. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24828. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas