Los efectos tóxicos del antirretroviral nevirapina y de um fármaco a base de nevirapina para los organismos acuáticos
DOI:
https://doi.org/10.33448/rsd-v11i2.25014Palabras clave:
Toxicidad acuática; Seguridad ambiental; Ecotoxicidad; Micro contaminantes.Resumen
La toxicidad acuática de los ingredientes farmacéuticos activos (API) y los fármacos está poco explorada en la literatura. La nevirapina (NVP) es un inhibidor de la transcriptasa inversa antirretroviral no nucleósido. Este estudio evaluó la toxicidad acuática de este API solo y como un fármaco basado en NVP. Para ello, se analizaron los efectos sobre la viabilidad de los organismos acuáticos Chlorella vulgaris, Artemia salina y Aliivibrio fischeri. Se aplicaron las pruebas de inhibición del crecimiento durante 72 h para la microalga C. vulgaris, la mortalidad durante 24 h para el microcrustáceo A. salina y la prueba de inhibición de bioluminiscencia durante 15 min para la bacteria A. fischeri. Se utilizó el modelo estadístico log-logístico de dosis-respuesta no paramétrico para obtener concentraciones efetivas (CE) del 50% y el 10% para NVP sola y para el fármaco. Se encontró que la NVP aislada afectó la viabilidad de las tres especies estudiadas, sin embargo, el fármaco basado en NVP no fue tóxico para A. salina. Es de destacar que el CE50% de NVP difirió estadísticamente entre el API y el fármaco para A. fischeri y A. salina. También se observó que existe un rango de concentración estrecho entre la aparición de los primeros efectos observables y los efectos tóxicos de NVP en estas especies. Esto refuerza la importancia de estudiar y controlar la liberación de este API al medio ambiente. Finalmente, se concluyó que es posible implementar el monitoreo de la toxicidad ambiental de micro contaminantes en la rutina industrial, utilizando pruebas de toxicidad estandarizadas y económicamente accesibles, que ofrecen rapidez y practicidad en el análisis de efluentes.
Citas
Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A., Shar, G. A., Tahir, M. A. & Iqbal M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Sci. Total Environ. 626: 1295-1309. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.066
Amarante, C. B., Müller, A. H., Póvoa, M. M. & Dolabela, M. F. (2011) Estudo fitoquímico biomonitorado pelos ensaios de toxicidade frente à Artemia salina e de atividade antiplasmódica do caule de aninga (Montrichardia linifera). Acta Amazonica. 41, 3, 431-434. DOI: https://doi.org/10.1590/S0044-59672011000300015>
ANSES - Agence Nationale de Securite Sanitaire. (2013). National analysis campaign on drug residues in water intended for human consumption. Retrieved May 6, 2020, from www.anses.fr/en/content/national-analysis-campaign-drug-residues-water-results-line-expectation.
Awodele, O., Popoola, T., Rotimi, K., Ikumawoyi, V. & Okunowo, W. (2015). Antioxidant modulation of nevirapine induced hepatotoxicity in rats. Interdisciplinary Toxicology, 8(1), 8–14. DOI: https://doi.org/0.1515/intox-2015-0002
BIO Intelligence Service. (2013). Study on the environmental risks of medicinal products, Final Report prepared for Executive Agency for Health and Consumers.
Boehringer Ingelheim, Vetmedica. Safety data sheet United States nevirapine. Version 1. (2015). Retrived 2020, from https://www.bi-vetmedica.com/sites/default/files/MSDS/nevirapine-sds-us.pdf
Boehringer Ingelheim, Viramune® (nevirapine) Tablets/Viramune® (nevirapine) oral suspension, U.S. prescribing information. (2019) Retrived 2020, from https://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Viramune/Viramune.pdf
Boxall, A. B. A., Keller, V. D. J., Strau, J. O., Monteiro, S. C., Fussell, R. & Williams, R. J. (2014). Exploiting monitoring data in environmental exposure modelling and risk assessment of pharmaceuticals. Environment International, 73: 176-185. DOI: https://doi.org/10.1016/j.envint.2014.07.018.
Costa, C. R., Olivi P., Botta, C. M. R. & Espindola, E. L. G. (2008). Toxicity in aquatic environments: Discussion and evaluation methods. Química Nova, 31: 1820-1830. DOI: https://doi.org/10.1590/S0100-40422008000700038.
Czech, B., Jośko, I. & Oleszczuk, P.( 2014). Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and Environmental Safety, 104: 247-253. DOI: https://doi.org/10.1016/j.ecoenv.2014.03.024
Darienko, T., Rad-Menéndez, C., Campbell, C., & Pröschold, T. (2019). Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov. Systematics and Biodiversity, 17(8), 811–829. DOI: https://doi.org/10.1080/14772000.2019.1690597
Das, K., Martinez, S. E., Bauman, J. D. & Arnold, E. (2012). HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nature Structural & Molecular Biology, 19: 253–259. DOI: https://doi.org/10.1038/nsmb.2223
de García, S. O., García-Encina, P. A. & Irusta-Mata, R. (2016). Dose-response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products. Ecotoxicology, 25: 141– 790 162. DOI: https://doi.org/10.1007/s10646-015-1576-8
del Valle, L. G., Hernández, R. G. & Ávila, J. P. (2013). Oxidative stress associated to disease progression and toxicity during antiretroviral therapy in human immunodeficiency virus infection. Journal of Virology & Microbiology, 2013, 279685, 15. DOI: https://doi.org/10.5171/2013.279685
Dong, Y., Fang, Z., Xu, Y., Wang, Q. & Zou, X. (2019). The toxic effects of three active pharmaceutical ingredients (APIs) with different efficacy to Vibrio fischeri. Emerg. Contam. 5: 297-302. DOI: https://doi.org/10.1016/j.emcon.2019.08.004
Du, J., Yuan, Y., Si, T., Lian, J. & Zhao, H. (2012). Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 40: 142. DOI: https://doi.org/10.1093/nar/gks549
Dunn, A. K. (2012). Vibrio fischeri metabolism: symbiosis and beyond. Advances in microbial physiology, 61: 37–68. https://doi.org/10.1016/B978-0-12-394423-8.00002-0
Fernández, L. P., Brasca, R., Attademo, A. M., Peltzer, P. M., Lajmanovich, R. C. & Culzoni, M. J. (2020). Bioaccumulation and glutathione S-transferase activity on Rhinella arenarum tadpoles after 813 short-term exposure to antiretrovirals. Chemosphere, 246. 125830 DOI: https://doi.org/10.1016/j.chemosphere.2020.125830
Geiger, E., Gausterer, R. H. & Saçan, M. T. (2016). Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicology and Environmental Safety, 129: 189-198. DOI: https://doi.org/10.1016/j.ecoenv.2016.03.032
GHS (2019) Globally Harmonized System of Classification and Labelling of Chemicals. Eighth Revised Edition, United Nations, New York, DOI: https://doi.org/10.18356/f8fbb7cb-en
González, M. A., Proschold, T., Palacios, Y., Aguayo, P., Inostroza, I., & Gomez, P. I. (2013). Taxonomic identification and lipid production of two Chilean Chlorella-like strains isolated from a marine and an estuarine coastal environment. AoB Plants, 5(0), plt020–plt020. DOI: https://doi.org/10.1093/aobpla/plt020
González-González, R. B., Sharma, A., Parra-Saldívar, R., Ramirez-Mendoza, R. A., Bilal, M. & Iqbal, H. M. N. (2022). Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials. J Hazard Mater. 5; 423 (Pt B):127145. DOI: https://doi.org/1010.1016/j.jhazmat.2021.127145.
Gupta, B. P., Lama, T. K., Adhikari, A., Shrestha, A., Rauniyar, R., Sapkota, B., Thapa, S., Shrestha, S., Gupta, P. P. & Manandhar, K. D. (2016). First report of hepatitis E virus viremia in healthy blood donors from Nepal. Virus Disease, 27: 324–326. DOI: https://doi.org/10.1007/s13337-016-0331-y
Hube, S. & Wu, B. (2021) Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: A review, Science of The Total Environment, 779,146545. DOI: https://doi.org/10.1016/j.scitotenv.2021.146545
Hulgan, T., Morrow, J., D’Aquila, R. T., Raffanti, S., Morgan, M., Rebeiro, P. & Haas, D. W. (2003). Oxidant stress is increased during treatment of human immunodeficiency virus infection. Clinical Infectious Diseases, 37:1711–7. DOI: https://doi.org/10.1086/379776
ISO 11348-3. (2007) Water quality – determination of the inhibitory effect of waste samples on the light emission of Vibrio fischeri (luminescent bacteria test) – part 3: method using freeze-dried bacteria. Geneva. International Organization for Standardization.
Jacob, R. S., Santos, L. V., Souza, A. F. & Lange, L. C. (2016). A toxicity assessment of 30 pharmaceuticals using Aliivibrio fischeri: a comparison of the acute effects of different formulations. Environmental tecnology, 37: 2760-2767. DOI: https://doi.org/10.1080/09593330.2016.1164249
Jain, V., Hartogensis, W., Bacchetti, P., Hunt, P. W., Hatano, H., Sinclair, E., Epling, L., Lee, T. H., Busch, M. P., McCune, J. M., Pilcher, C. D., Hecht. F. M. & Deeks, S. G. (2013). Antiretroviral therapy initiated within 6 months of HIV infection is associated with lower T-cell activation and smaller HIV reservoir size. J. Infect. Dis, 208: 1202–1211. DOI: https://doi.org/10.1093/infdis/jit311.
Jos, A., Repetto, G., Rios, J. C., Hazen, M. J., Molero, M. L., del Peso, A., Salguero, M., Fernández-Freire, P., Pérez-Martı́n, J. M. & Cameán A. (2003). Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicology in Vitro, 17: 525-532. DOI: https://doi.org/10.1016/S0887-2333(03)00119-X
Kaiser, L. E. (1998). Correlations of vibrio fischeri bacteria test data with bioassay data for other organisms. Environmental Health Perspectives, 106 (2). 583-591. Doi: https://doi.org/10.1289/ehp.98106583
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J. & Bolton, E. E. (2019). PubChem 2019 update: improved access to chemical 871 data. Nucleic acids research, 47: 1102-1109. DOI: https://doi.org/10.1093/nar/gky1033
K'oreje, K. O., Demeestere, K., De Wispelaere, P., Vergeynst, L., Dewulf, J., Van Langenhove, H. (2012). From multi-residue screening to target analysis of pharmaceuticals in water: Development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya. Sci. Total Environ. 437: 153-164. DOI: https://doi.org/10.1016/j.scitotenv.2012.07.052
K'oreje, K.O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H. & Demeestere, K. (2016). Occurrence Patterns of Pharmaceutical Residues in Wastewater, Surface Water and Groundwater of Nairobi and Kisumu City, Kenya. Chemosphere, 149: 238-244. DOI: https://doi.org/10.1016/j.chemosphere.2016.01.095
Kroeger, M. B. S., Rouze, C. A., Taneyhill, L. A., Smith, N. A., Hughes, S. H., Boyer, P. L., Janssen, P. A. J., Moereels, H., Koymans, L., Arnold, E., Ding, J., Das, K., Zhang, W., Michejda, C. J. & Smith Jr, R. H. (1995). Molecular modeling studies of HIV-1 reverse transcriptase nonnucleoside inhibitors: Total energy of complexation as a predictor of drug placement and activity. Protein Science, 4:2203-2222. DOI: https://doi.org/10.1002/pro.5560041026
Kümmerer, K. (2009). Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75: 417-434. DOI: https://doi.org/10.1016/j.Chemosphere.2008.11.086
Leitão, J. M. M. & Silva, J. C. G. E. (2010). Firefly luciferase inhibition. Journal of Photochemistry and Photobiology B: Biology, 101: 1-8. DOI: https://doi.org/10.1016/j.jphotobiol.2010.06.015
Li, T., Xu, G., Rong, J., Chen, H., He, C., Giordano, M., Wang, Q. (2016). The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. Journal of Plant Physiology, 195: 73-79. DOI: https://doi.org/10.1016/j.jplph.2016.03.006
Libralato, G., Prato, E., Migliore, L., Cicero, A. & Manfra, L. (2016). A review of toxicity testing protocols and endpoints with Artemia spp. Ecolological Indicators, 69: 35-49. DOI: https://doi.org/10.1016/j.ecolind.2016.04.017
Lu, Y., Xu, X., Meng, C., Zhou, J., Sheng, J., Wu, C. &, Xu, S. (2013). The toxicity assay of Artemia salina as a biological model for the preliminary toxic evaluation of chemical pollutants. Advanced Materials Research, 726–731, 230–233. DOI: https://doi.org/10.4028/www.scientific.net/AMR.726-731.230
Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S. & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment, 473-474, 619–641. DOI: https://doi.org/10.1016/j.scitotenv.2013.12.065.
Marques, S. M. & Silva, J. C. G. E. (2009). Firefly bioluminescence: A mechanistic approach of luciferase catalyzed reactions. IUBMB Life, 61: 6-17. DOI: https://doi.org/10.1002/iub.134
Martins, A. C. R., da Costa, J. K. N., Herbert, A., Farias, F. R. S., Rezende, M., Kozlowski Junior, V. A. & de Geus, J. L. (2021) Toxicity assessment of mastic and pomegranate tinctures using the Artemia salina bioassay. Research, Society and Development, [S. l.], 10, 3, e5201031375. DOI: https://doi.org/10.33448/rsd-v10i3.13751.
Meyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D. & McLaughlin, J. (1982). Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Medica, 45: 31–34. DOI: https://doi.org/10.1055/s-2007-971236
Minagh, E., Hernan, R., O'Rourke, K., Lyng, F. M. & Davoren, M. (2009). Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotoxicology and environmental safety, 72: 434–440. DOI: https://doi.org/10.1016/j.ecoenv.2008.05.002
Minguez, L., Pedelucq, J., Farcy, E., Ballandonne, C., Budzinski, H. & Halm-Lemeillz, M. P. (2016). Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environmental Science and Pollution Research, 23: 4992–5001. DOI: https://doi.org/10.1007/s11356-014-3662-5
Ngumba, E., Gachanja, A. & Tuhkanen, T. (2016). Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Science of the Total Environ, 539: 206–213. DOI: https://doi.org/10.1016/j.scitotenv.2015.08.139
Nie, X., Wang, X., Chen, J., Zitko, V. & An T. (2008). Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin. Environmental Toxicology and Chemistry, 27: 168-173. DOI: https://doi.org/10.1897/07-028.1
Nunes-Halldorson, V. S. & Duran, N. L. (2003). Bioluminescent bacteria: lux genes as environmental biosensors. Braz. J. Microbiol., 34: 91-96. DOI: https://doi.org/10.1590/S1517-83822003000200001
Nunes, B. S., Carvalho, F. D., Guilhermino, L. M. & Van Stappen, G. (2006). Use of the genus Artemia in ecotoxicity testing. Environmental pollution, 144: 453–462. DOI: https://doi.org/10.1016/j.envpol.2005.12.037
Oliveira, G. A. R., Leme, D. M., de Lapuente, J., Brito, L. B., Porredón, C., Rodrigues, L. B., Brull, N., Serret, J. T., Borràs, M., Disner, G. R., Cestari, M. M. & Oliveira, D. P. (2018). A test battery for assessing the ecotoxic effects of textile dyes. Chem Biol Interact. 1;291:171-179. Doi: https://doi.org/10.1016/j.cbi.2018.06.026.
Onbasili, D. & Duman, F. (2010). Acute toxicity of some insecticides on Artemia salina and Daphnia magna. Fresenius Environmental Bulletin. 19 (11): 2608-2610
Organisation for Economic Co-operation and Development – OECD. (2011). Guidelines for testing chemicals freshwater alga and cyanobacteria growth inhibition test. 201. Retrived from https://www.oecd-ilibrary.org/docserver/9789264069923-en.pdf?expi
Parvez, B. S., Venkataraman, C. & Mukherji, S. (2005). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32, 265 – 268. Doi: https://doi.org/10.1016/j.envint.2005.08.022
Pavlaki, M. D., Pereira, R., Loureiro, S. & Soares, A. M. (2011). Effects of binary mixtures on the life traits of Daphnia magna. Ecotoxicology and environmental safety, 74: 99–110. Doi: https://doi.org/10.1016/j.ecoenv.2010.07.010
Prasse, C., Schlüsener, M. P., Schulz, R. & Ternes, T. A. (2010). Antiviral Drugs in Wastewater and Surface Waters: A New Pharmaceutical Class of Environmental Relevance? Environmental science & technology, 44: 1728-1735. Doi: https://doi.org/10.1021/es903216p
Rajabi, S., Ramazani, A., Hamidi, M. & Naji, T. (2015) Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J Pharm Sci 23, 20. Doi: https://doi.org/10.1186/s40199-015-0105-x
Ribo, J. M. (1997). Interlaboratory Comparison Studies of the Luminescent Bacteria Toxicity. Bioassay. Environmental Toxicology and Water Quality, 12(4), 283–294. Retrived 2020, from https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902141905826462
Rippka, R., Deruelles, J. & Waterbury, J. B. (1979). Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of sant General Microbiology, 111: 61. Doi: https://doi.org/10.1099/00221287-111-1-1
Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. (2015). Dose-Response Analysis Using R. PLoS ONE, 10: e0146021. Doi: https://doi.org/10.1371/journal.pone.0146021
Rodrigues, M. O., Gonçalves, A. M. M.,Gonçalves, F. J. M., Nogueira, H., Marques, J. C. & Abrantes, N.(2018). Effectiveness of a methodology of microplastics isolation for environmental monitoring in freshwater systems, Ecological Indicators, 89: 488-495, ISSN 1470-160X. Doi: https://doi.org/10.1016/j.ecolind.2018.02.038.
Roede, J. R. & Miller, G. W. 2014. Diquat. Encyclopedia of Toxicology, 2. 202-204. Doi: http://dx.doi.org/10.1016/B978-0-12-386454-3.00137-8
Shea, D. (2004). Transport and Fate of Toxicants in the Environment. A Textbook of Modern Toxicology, 479–499. Doi: https://doi.org/10.1002/0471646776.ch27
Silva, A., Santos, L. H., Delerue-Matos, C.& Figueiredo, A. S. 2014. Impact of excipients in the chronic toxicity of fluoxetine on the alga Chlorella vulgaris. Environmental technology, 35: 3124-3129. Doi: https://doi.org/10.1080/09593330.2014.932438
Silva, S. R., Barbosa, F. A. R., Mol, M. P. G., Magalhães, S. M. S. (2019). Toxicity for Aquatic Organisms of Antiretroviral Tenofovir Disoproxil. Journal of Environmental Protection, 10: 1565-1577. Doi: https://doi.org/10.4236/jep.2019.1012093
Stewart, M., Olsen, G., Hickey, C. W., Ferreira, B., Jelić, A., Petrović, M., & Barcelo, D. (2014).A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Science of The Total Environment, 468-469, 202–210. Doi: https://doi.org/10.1016/j.scitotenv.2013.08.039:
van der Merwe, J., Steenekamp, J., Steyn, D. & Hamman, J. (2020). The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability. Pharmaceutics, 12, 393. Doi: https://doi.org/10.3390/pharmaceutics12050393
Vaňková, M. (2010). Biodegradability analysis of pharmaceuticals used in developing countries; screening with OxiTop ® - C 11073f., Doctoral thesis. Tampere University of Applied Sciences, Finland
Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment - a review. Science of the total environment, 429, 123-155. Doi: https://doi.org/10.1016/j.scitotenv.2012.04.028
Wang, L., Wang, H., Chen, X., Zhuang, Y., Yu, Z. & Zhou, T. (2018). Acclimation process of cultivating Chlorella vulgaris in toxic excess sludge extract and its response mechanism. The Science of the total environment, 628-629, 858–869. Doi: https://doi.org/10.1016/j.scitotenv.2018.02.020
Weyman, G. S., Rufli, H., Weltje, L., Salinas, E. R. & Hamitou, M. (2012). Aquatic toxicity tests with substances that are poorly soluble in water and consequences for environmental risk assessment. Environmental toxicology and chemistry, 31: 1662–1669. Doi: https://doi.org/10.1002/etc.1856
Wood, T. P., Duvenage, C. S. J. & Rohwer, E. (2015). The occurrence of anti-retroviral compounds used for HIV treatment in South African surface water. Environmental pollution, 199: 235-243. Doi: https://doi.org/10.1016/j.envpol.2015.01.030
Zakrzewski, S. F. (2002). Environmental toxicology. Oxford University Press. ISBN-13: 9780195148114
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Juliana Souki Diniz; Leonardo Alvarenga de Paula Freitas; Izabela Cristina Dias Vaz; Francisco Antônio Rodrigues Barbosa; Marcos Paulo Gomes Mol; Sérgia Maria Starling Magalhães; Micheline Rosa Silveira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.