Los efectos tóxicos del antirretroviral nevirapina y de um fármaco a base de nevirapina para los organismos acuáticos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i2.25014

Palabras clave:

Toxicidad acuática; Seguridad ambiental; Ecotoxicidad; Micro contaminantes.

Resumen

La toxicidad acuática de los ingredientes farmacéuticos activos (API) y los fármacos está poco explorada en la literatura. La nevirapina (NVP) es un inhibidor de la transcriptasa inversa antirretroviral no nucleósido. Este estudio evaluó la toxicidad acuática de este API solo y como un fármaco basado en NVP. Para ello, se analizaron los efectos sobre la viabilidad de los organismos acuáticos Chlorella vulgaris, Artemia salina y Aliivibrio fischeri. Se aplicaron las pruebas de inhibición del crecimiento durante 72 h para la microalga C. vulgaris, la mortalidad durante 24 h para el microcrustáceo A. salina y la prueba de inhibición de bioluminiscencia durante 15 min para la bacteria A. fischeri. Se utilizó el modelo estadístico log-logístico de dosis-respuesta no paramétrico para obtener concentraciones efetivas (CE) del 50% y el 10% para NVP sola y para el fármaco. Se encontró que la NVP aislada afectó la viabilidad de las tres especies estudiadas, sin embargo, el fármaco basado en NVP no fue tóxico para A. salina. Es de destacar que el CE50% de NVP difirió estadísticamente entre el API y el fármaco para A. fischeri y A. salina. También se observó que existe un rango de concentración estrecho entre la aparición de los primeros efectos observables y los efectos tóxicos de NVP en estas especies. Esto refuerza la importancia de estudiar y controlar la liberación de este API al medio ambiente. Finalmente, se concluyó que es posible implementar el monitoreo de la toxicidad ambiental de micro contaminantes en la rutina industrial, utilizando pruebas de toxicidad estandarizadas y económicamente accesibles, que ofrecen rapidez y practicidad en el análisis de efluentes.

Biografía del autor/a

Leonardo Alvarenga de Paula Freitas, Fundação Ezequiel Dias

Titulação máxima (concluída ou em andamento) / Instituição: Mestrando em Biotecnologia - Fundação Ezequiel Dias
Vínculo Institucional Atual / Cargo: Fundação Ezequiel Dias - Servidor Público - Farmacêutico Analista e Pesquisador de Saúde e Tecnologia do Serviço de Desenvolvimento Analítico e Estudo de Estabilidade da Divisão de Desenvolvimento de Medicamentos da Diretoria Industrial - Responsável Técnico Assistente da Diretoria Industrial

Izabela Cristina Dias Vaz, Universidade Federal de Minas Gerais

Analista ambiental inscrito en CRBio4, tengo 8 años de experiencia en limnología. En concreto, presto servicios de análisis sistemático y taxonómico de zooplancton, cianobacterias y microalgas.

Francisco Antônio Rodrigues Barbosa, Universidade Federal de Minas Gerais

Es licenciado en Historia Natural por la Universidad Federal de Minas Gerais (1973), máster en Ecología y Recursos Naturales por la Universidad Federal de São Carlos (1979), doctor en Ecología y Recursos Naturales por la Universidad Federal de São Carlos (1981) y posdoctorado en ecofisiología de algas por el Instituto de Ecología de Agua Dulce-Inglaterra. Actualmente es investigador 1 B del Consejo Nacional de Desarrollo Científico y Tecnológico, profesor titular de la Universidad Federal de Minas Gerais y coordinador del curso de especialización en Gestión de Recursos Hídricos Municipales en el ICB / UFMG. 

Marcos Paulo Gomes Mol, Fundação Ezequiel Dias

Graduado en Ingeniería Ambiental por la Universidad Federal de Ouro Preto - UFOP (2006), Máster (2011) y Doctorado (2016) en Saneamiento y Medio Ambiente por la Universidad Federal de Minas Gerais - UFMG; realizó el doctorado en sándwich en la London School of Hygiene and Tropical Medicine, Reino Unido (2015-2016), bajo la tutoría del Prof. Sandy Cairncross. Fue coordinador de la Unidad de Gestión Ambiental de la Fundación Ezequiel Dias (FUNED) en Belo Horizonte, (2007 a 2015) y actualmente es investigador en FUNED, coordinando el Grupo de Investigación en Salud y Medio Ambiente, acreditado en CNPq. Es profesor del Máster Profesional en Biotecnología de la FUNED.

Sérgia Maria Starling Magalhães, Universidade Federal de Minas Gerais

Licenciado en Farmacia por la Universidad Federal de Minas Gerais (1986), Máster en Química por la Universidad Federal de Minas Gerais (1991) y Doctor en Química por la Universidad Federal de Minas Gerais (1996). Actualmente es profesor asociado en la Universidade Federal de Minas Gerais. Trabaja en el área de Farmacia, con énfasis en la salud colectiva y el medio ambiente. Trabaja principalmente en los siguientes temas: estudios sobre el uso de medicamentos y medio ambiente y salud. Coordina el laboratorio de análisis de aguas de la institución y desarrolla investigaciones en el ámbito de la biodegradación/biorremediación de contaminantes acuáticos mediante cianobacterias.

Micheline Rosa Silveira, Universidade Federal de Minas Gerais

Graduada en Farmacia con Calificación en Análisis Clínicos por la Universidad Federal de Ouro Preto (1995), con maestría (1997) y doctorado (2002) en Ciencias Biológicas (Fisiología y Farmacología) por la Universidad Federal de Minas Gerais (UFMG). Es profesora de la UFMG desde 2006. Profesor Asociado del Departamento de Farmacia Social - UFMG. Investigador colaborador del Grupo de Investigación en Farmacoepidemiología (GPFE) de la Facultad de Farmacia - UFMG. Tiene experiencia en las áreas de medicamentos y asistencia farmacéutica, con énfasis en asistencia farmacéutica y enfermedades infecciosas. Actualmente es vicedirector de la Facultad de Farmacia de la UFMG.

Citas

Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A., Shar, G. A., Tahir, M. A. & Iqbal M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Sci. Total Environ. 626: 1295-1309. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.066

Amarante, C. B., Müller, A. H., Póvoa, M. M. & Dolabela, M. F. (2011) Estudo fitoquímico biomonitorado pelos ensaios de toxicidade frente à Artemia salina e de atividade antiplasmódica do caule de aninga (Montrichardia linifera). Acta Amazonica. 41, 3, 431-434. DOI: https://doi.org/10.1590/S0044-59672011000300015>

ANSES - Agence Nationale de Securite Sanitaire. (2013). National analysis campaign on drug residues in water intended for human consumption. Retrieved May 6, 2020, from www.anses.fr/en/content/national-analysis-campaign-drug-residues-water-results-line-expectation.

Awodele, O., Popoola, T., Rotimi, K., Ikumawoyi, V. & Okunowo, W. (2015). Antioxidant modulation of nevirapine induced hepatotoxicity in rats. Interdisciplinary Toxicology, 8(1), 8–14. DOI: https://doi.org/0.1515/intox-2015-0002

BIO Intelligence Service. (2013). Study on the environmental risks of medicinal products, Final Report prepared for Executive Agency for Health and Consumers.

Boehringer Ingelheim, Vetmedica. Safety data sheet United States nevirapine. Version 1. (2015). Retrived 2020, from https://www.bi-vetmedica.com/sites/default/files/MSDS/nevirapine-sds-us.pdf

Boehringer Ingelheim, Viramune® (nevirapine) Tablets/Viramune® (nevirapine) oral suspension, U.S. prescribing information. (2019) Retrived 2020, from https://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Viramune/Viramune.pdf

Boxall, A. B. A., Keller, V. D. J., Strau, J. O., Monteiro, S. C., Fussell, R. & Williams, R. J. (2014). Exploiting monitoring data in environmental exposure modelling and risk assessment of pharmaceuticals. Environment International, 73: 176-185. DOI: https://doi.org/10.1016/j.envint.2014.07.018.

Costa, C. R., Olivi P., Botta, C. M. R. & Espindola, E. L. G. (2008). Toxicity in aquatic environments: Discussion and evaluation methods. Química Nova, 31: 1820-1830. DOI: https://doi.org/10.1590/S0100-40422008000700038.

Czech, B., Jośko, I. & Oleszczuk, P.( 2014). Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and Environmental Safety, 104: 247-253. DOI: https://doi.org/10.1016/j.ecoenv.2014.03.024

Darienko, T., Rad-Menéndez, C., Campbell, C., & Pröschold, T. (2019). Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov. Systematics and Biodiversity, 17(8), 811–829. DOI: https://doi.org/10.1080/14772000.2019.1690597

Das, K., Martinez, S. E., Bauman, J. D. & Arnold, E. (2012). HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nature Structural & Molecular Biology, 19: 253–259. DOI: https://doi.org/10.1038/nsmb.2223

de García, S. O., García-Encina, P. A. & Irusta-Mata, R. (2016). Dose-response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products. Ecotoxicology, 25: 141– 790 162. DOI: https://doi.org/10.1007/s10646-015-1576-8

del Valle, L. G., Hernández, R. G. & Ávila, J. P. (2013). Oxidative stress associated to disease progression and toxicity during antiretroviral therapy in human immunodeficiency virus infection. Journal of Virology & Microbiology, 2013, 279685, 15. DOI: https://doi.org/10.5171/2013.279685

Dong, Y., Fang, Z., Xu, Y., Wang, Q. & Zou, X. (2019). The toxic effects of three active pharmaceutical ingredients (APIs) with different efficacy to Vibrio fischeri. Emerg. Contam. 5: 297-302. DOI: https://doi.org/10.1016/j.emcon.2019.08.004

Du, J., Yuan, Y., Si, T., Lian, J. & Zhao, H. (2012). Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 40: 142. DOI: https://doi.org/10.1093/nar/gks549

Dunn, A. K. (2012). Vibrio fischeri metabolism: symbiosis and beyond. Advances in microbial physiology, 61: 37–68. https://doi.org/10.1016/B978-0-12-394423-8.00002-0

Fernández, L. P., Brasca, R., Attademo, A. M., Peltzer, P. M., Lajmanovich, R. C. & Culzoni, M. J. (2020). Bioaccumulation and glutathione S-transferase activity on Rhinella arenarum tadpoles after 813 short-term exposure to antiretrovirals. Chemosphere, 246. 125830 DOI: https://doi.org/10.1016/j.chemosphere.2020.125830

Geiger, E., Gausterer, R. H. & Saçan, M. T. (2016). Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicology and Environmental Safety, 129: 189-198. DOI: https://doi.org/10.1016/j.ecoenv.2016.03.032

GHS (2019) Globally Harmonized System of Classification and Labelling of Chemicals. Eighth Revised Edition, United Nations, New York, DOI: https://doi.org/10.18356/f8fbb7cb-en

González, M. A., Proschold, T., Palacios, Y., Aguayo, P., Inostroza, I., & Gomez, P. I. (2013). Taxonomic identification and lipid production of two Chilean Chlorella-like strains isolated from a marine and an estuarine coastal environment. AoB Plants, 5(0), plt020–plt020. DOI: https://doi.org/10.1093/aobpla/plt020

González-González, R. B., Sharma, A., Parra-Saldívar, R., Ramirez-Mendoza, R. A., Bilal, M. & Iqbal, H. M. N. (2022). Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials. J Hazard Mater. 5; 423 (Pt B):127145. DOI: https://doi.org/1010.1016/j.jhazmat.2021.127145.

Gupta, B. P., Lama, T. K., Adhikari, A., Shrestha, A., Rauniyar, R., Sapkota, B., Thapa, S., Shrestha, S., Gupta, P. P. & Manandhar, K. D. (2016). First report of hepatitis E virus viremia in healthy blood donors from Nepal. Virus Disease, 27: 324–326. DOI: https://doi.org/10.1007/s13337-016-0331-y

Hube, S. & Wu, B. (2021) Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: A review, Science of The Total Environment, 779,146545. DOI: https://doi.org/10.1016/j.scitotenv.2021.146545

Hulgan, T., Morrow, J., D’Aquila, R. T., Raffanti, S., Morgan, M., Rebeiro, P. & Haas, D. W. (2003). Oxidant stress is increased during treatment of human immunodeficiency virus infection. Clinical Infectious Diseases, 37:1711–7. DOI: https://doi.org/10.1086/379776

ISO 11348-3. (2007) Water quality – determination of the inhibitory effect of waste samples on the light emission of Vibrio fischeri (luminescent bacteria test) – part 3: method using freeze-dried bacteria. Geneva. International Organization for Standardization.

Jacob, R. S., Santos, L. V., Souza, A. F. & Lange, L. C. (2016). A toxicity assessment of 30 pharmaceuticals using Aliivibrio fischeri: a comparison of the acute effects of different formulations. Environmental tecnology, 37: 2760-2767. DOI: https://doi.org/10.1080/09593330.2016.1164249

Jain, V., Hartogensis, W., Bacchetti, P., Hunt, P. W., Hatano, H., Sinclair, E., Epling, L., Lee, T. H., Busch, M. P., McCune, J. M., Pilcher, C. D., Hecht. F. M. & Deeks, S. G. (2013). Antiretroviral therapy initiated within 6 months of HIV infection is associated with lower T-cell activation and smaller HIV reservoir size. J. Infect. Dis, 208: 1202–1211. DOI: https://doi.org/10.1093/infdis/jit311.

Jos, A., Repetto, G., Rios, J. C., Hazen, M. J., Molero, M. L., del Peso, A., Salguero, M., Fernández-Freire, P., Pérez-Martı́n, J. M. & Cameán A. (2003). Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicology in Vitro, 17: 525-532. DOI: https://doi.org/10.1016/S0887-2333(03)00119-X

Kaiser, L. E. (1998). Correlations of vibrio fischeri bacteria test data with bioassay data for other organisms. Environmental Health Perspectives, 106 (2). 583-591. Doi: https://doi.org/10.1289/ehp.98106583

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J. & Bolton, E. E. (2019). PubChem 2019 update: improved access to chemical 871 data. Nucleic acids research, 47: 1102-1109. DOI: https://doi.org/10.1093/nar/gky1033

K'oreje, K. O., Demeestere, K., De Wispelaere, P., Vergeynst, L., Dewulf, J., Van Langenhove, H. (2012). From multi-residue screening to target analysis of pharmaceuticals in water: Development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya. Sci. Total Environ. 437: 153-164. DOI: https://doi.org/10.1016/j.scitotenv.2012.07.052

K'oreje, K.O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H. & Demeestere, K. (2016). Occurrence Patterns of Pharmaceutical Residues in Wastewater, Surface Water and Groundwater of Nairobi and Kisumu City, Kenya. Chemosphere, 149: 238-244. DOI: https://doi.org/10.1016/j.chemosphere.2016.01.095

Kroeger, M. B. S., Rouze, C. A., Taneyhill, L. A., Smith, N. A., Hughes, S. H., Boyer, P. L., Janssen, P. A. J., Moereels, H., Koymans, L., Arnold, E., Ding, J., Das, K., Zhang, W., Michejda, C. J. & Smith Jr, R. H. (1995). Molecular modeling studies of HIV-1 reverse transcriptase nonnucleoside inhibitors: Total energy of complexation as a predictor of drug placement and activity. Protein Science, 4:2203-2222. DOI: https://doi.org/10.1002/pro.5560041026

Kümmerer, K. (2009). Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75: 417-434. DOI: https://doi.org/10.1016/j.Chemosphere.2008.11.086

Leitão, J. M. M. & Silva, J. C. G. E. (2010). Firefly luciferase inhibition. Journal of Photochemistry and Photobiology B: Biology, 101: 1-8. DOI: https://doi.org/10.1016/j.jphotobiol.2010.06.015

Li, T., Xu, G., Rong, J., Chen, H., He, C., Giordano, M., Wang, Q. (2016). The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. Journal of Plant Physiology, 195: 73-79. DOI: https://doi.org/10.1016/j.jplph.2016.03.006

Libralato, G., Prato, E., Migliore, L., Cicero, A. & Manfra, L. (2016). A review of toxicity testing protocols and endpoints with Artemia spp. Ecolological Indicators, 69: 35-49. DOI: https://doi.org/10.1016/j.ecolind.2016.04.017

Lu, Y., Xu, X., Meng, C., Zhou, J., Sheng, J., Wu, C. &, Xu, S. (2013). The toxicity assay of Artemia salina as a biological model for the preliminary toxic evaluation of chemical pollutants. Advanced Materials Research, 726–731, 230–233. DOI: https://doi.org/10.4028/www.scientific.net/AMR.726-731.230

Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S. & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment, 473-474, 619–641. DOI: https://doi.org/10.1016/j.scitotenv.2013.12.065.

Marques, S. M. & Silva, J. C. G. E. (2009). Firefly bioluminescence: A mechanistic approach of luciferase catalyzed reactions. IUBMB Life, 61: 6-17. DOI: https://doi.org/10.1002/iub.134

Martins, A. C. R., da Costa, J. K. N., Herbert, A., Farias, F. R. S., Rezende, M., Kozlowski Junior, V. A. & de Geus, J. L. (2021) Toxicity assessment of mastic and pomegranate tinctures using the Artemia salina bioassay. Research, Society and Development, [S. l.], 10, 3, e5201031375. DOI: https://doi.org/10.33448/rsd-v10i3.13751.

Meyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D. & McLaughlin, J. (1982). Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Medica, 45: 31–34. DOI: https://doi.org/10.1055/s-2007-971236

Minagh, E., Hernan, R., O'Rourke, K., Lyng, F. M. & Davoren, M. (2009). Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotoxicology and environmental safety, 72: 434–440. DOI: https://doi.org/10.1016/j.ecoenv.2008.05.002

Minguez, L., Pedelucq, J., Farcy, E., Ballandonne, C., Budzinski, H. & Halm-Lemeillz, M. P. (2016). Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environmental Science and Pollution Research, 23: 4992–5001. DOI: https://doi.org/10.1007/s11356-014-3662-5

Ngumba, E., Gachanja, A. & Tuhkanen, T. (2016). Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Science of the Total Environ, 539: 206–213. DOI: https://doi.org/10.1016/j.scitotenv.2015.08.139

Nie, X., Wang, X., Chen, J., Zitko, V. & An T. (2008). Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin. Environmental Toxicology and Chemistry, 27: 168-173. DOI: https://doi.org/10.1897/07-028.1

Nunes-Halldorson, V. S. & Duran, N. L. (2003). Bioluminescent bacteria: lux genes as environmental biosensors. Braz. J. Microbiol., 34: 91-96. DOI: https://doi.org/10.1590/S1517-83822003000200001

Nunes, B. S., Carvalho, F. D., Guilhermino, L. M. & Van Stappen, G. (2006). Use of the genus Artemia in ecotoxicity testing. Environmental pollution, 144: 453–462. DOI: https://doi.org/10.1016/j.envpol.2005.12.037

Oliveira, G. A. R., Leme, D. M., de Lapuente, J., Brito, L. B., Porredón, C., Rodrigues, L. B., Brull, N., Serret, J. T., Borràs, M., Disner, G. R., Cestari, M. M. & Oliveira, D. P. (2018). A test battery for assessing the ecotoxic effects of textile dyes. Chem Biol Interact. 1;291:171-179. Doi: https://doi.org/10.1016/j.cbi.2018.06.026.

Onbasili, D. & Duman, F. (2010). Acute toxicity of some insecticides on Artemia salina and Daphnia magna. Fresenius Environmental Bulletin. 19 (11): 2608-2610

Organisation for Economic Co-operation and Development – OECD. (2011). Guidelines for testing chemicals freshwater alga and cyanobacteria growth inhibition test. 201. Retrived from https://www.oecd-ilibrary.org/docserver/9789264069923-en.pdf?expi

Parvez, B. S., Venkataraman, C. & Mukherji, S. (2005). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32, 265 – 268. Doi: https://doi.org/10.1016/j.envint.2005.08.022

Pavlaki, M. D., Pereira, R., Loureiro, S. & Soares, A. M. (2011). Effects of binary mixtures on the life traits of Daphnia magna. Ecotoxicology and environmental safety, 74: 99–110. Doi: https://doi.org/10.1016/j.ecoenv.2010.07.010

Prasse, C., Schlüsener, M. P., Schulz, R. & Ternes, T. A. (2010). Antiviral Drugs in Wastewater and Surface Waters: A New Pharmaceutical Class of Environmental Relevance? Environmental science & technology, 44: 1728-1735. Doi: https://doi.org/10.1021/es903216p

Rajabi, S., Ramazani, A., Hamidi, M. & Naji, T. (2015) Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J Pharm Sci 23, 20. Doi: https://doi.org/10.1186/s40199-015-0105-x

Ribo, J. M. (1997). Interlaboratory Comparison Studies of the Luminescent Bacteria Toxicity. Bioassay. Environmental Toxicology and Water Quality, 12(4), 283–294. Retrived 2020, from https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902141905826462

Rippka, R., Deruelles, J. & Waterbury, J. B. (1979). Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of sant General Microbiology, 111: 61. Doi: https://doi.org/10.1099/00221287-111-1-1

Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. (2015). Dose-Response Analysis Using R. PLoS ONE, 10: e0146021. Doi: https://doi.org/10.1371/journal.pone.0146021

Rodrigues, M. O., Gonçalves, A. M. M.,Gonçalves, F. J. M., Nogueira, H., Marques, J. C. & Abrantes, N.(2018). Effectiveness of a methodology of microplastics isolation for environmental monitoring in freshwater systems, Ecological Indicators, 89: 488-495, ISSN 1470-160X. Doi: https://doi.org/10.1016/j.ecolind.2018.02.038.

Roede, J. R. & Miller, G. W. 2014. Diquat. Encyclopedia of Toxicology, 2. 202-204. Doi: http://dx.doi.org/10.1016/B978-0-12-386454-3.00137-8

Shea, D. (2004). Transport and Fate of Toxicants in the Environment. A Textbook of Modern Toxicology, 479–499. Doi: https://doi.org/10.1002/0471646776.ch27

Silva, A., Santos, L. H., Delerue-Matos, C.& Figueiredo, A. S. 2014. Impact of excipients in the chronic toxicity of fluoxetine on the alga Chlorella vulgaris. Environmental technology, 35: 3124-3129. Doi: https://doi.org/10.1080/09593330.2014.932438

Silva, S. R., Barbosa, F. A. R., Mol, M. P. G., Magalhães, S. M. S. (2019). Toxicity for Aquatic Organisms of Antiretroviral Tenofovir Disoproxil. Journal of Environmental Protection, 10: 1565-1577. Doi: https://doi.org/10.4236/jep.2019.1012093

Stewart, M., Olsen, G., Hickey, C. W., Ferreira, B., Jelić, A., Petrović, M., & Barcelo, D. (2014).A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Science of The Total Environment, 468-469, 202–210. Doi: https://doi.org/10.1016/j.scitotenv.2013.08.039:

van der Merwe, J., Steenekamp, J., Steyn, D. & Hamman, J. (2020). The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability. Pharmaceutics, 12, 393. Doi: https://doi.org/10.3390/pharmaceutics12050393

Vaňková, M. (2010). Biodegradability analysis of pharmaceuticals used in developing countries; screening with OxiTop ® - C 11073f., Doctoral thesis. Tampere University of Applied Sciences, Finland

Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment - a review. Science of the total environment, 429, 123-155. Doi: https://doi.org/10.1016/j.scitotenv.2012.04.028

Wang, L., Wang, H., Chen, X., Zhuang, Y., Yu, Z. & Zhou, T. (2018). Acclimation process of cultivating Chlorella vulgaris in toxic excess sludge extract and its response mechanism. The Science of the total environment, 628-629, 858–869. Doi: https://doi.org/10.1016/j.scitotenv.2018.02.020

Weyman, G. S., Rufli, H., Weltje, L., Salinas, E. R. & Hamitou, M. (2012). Aquatic toxicity tests with substances that are poorly soluble in water and consequences for environmental risk assessment. Environmental toxicology and chemistry, 31: 1662–1669. Doi: https://doi.org/10.1002/etc.1856

Wood, T. P., Duvenage, C. S. J. & Rohwer, E. (2015). The occurrence of anti-retroviral compounds used for HIV treatment in South African surface water. Environmental pollution, 199: 235-243. Doi: https://doi.org/10.1016/j.envpol.2015.01.030

Zakrzewski, S. F. (2002). Environmental toxicology. Oxford University Press. ISBN-13: 9780195148114

Publicado

22/01/2022

Cómo citar

DINIZ, J. S. .; FREITAS, L. A. de P. .; VAZ, I. C. D. .; BARBOSA, F. A. R. .; MOL, M. P. G. .; MAGALHÃES, S. M. S. .; SILVEIRA, M. R. . Los efectos tóxicos del antirretroviral nevirapina y de um fármaco a base de nevirapina para los organismos acuáticos. Research, Society and Development, [S. l.], v. 11, n. 2, p. e19211225014, 2022. DOI: 10.33448/rsd-v11i2.25014. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25014. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud