Os efeitos tóxicos do antirretroviral nevirapina e um medicamento à base de nevirapina para organismos aquáticos

Autores

DOI:

https://doi.org/10.33448/rsd-v11i2.25014

Palavras-chave:

Toxicidade aquática; Segurança ambiental; Ecotoxicidade; Micropoluentes.

Resumo

A toxicidade aquática de ingredientes ativos farmacêuticos (IFAs) e medicamentos é pouco explorada na literatura. A nevirapina (NVP) é um antirretroviral, inibidor não nucleosídeo da enzima transcriptase reversa. Este estudo avaliou a toxicidade aquática desse IFA isolado e como um medicamento à base de NVP. Para isso, foram analisados os efeitos sobre a viabilidade dos organismos aquáticos Chlorella vulgaris, Artemia salina e Aliivibrio fischeri. Foram aplicados os testes de inibição do crescimento por 72 h para a microalga C. vulgaris, de mortalidade por 24 h para o microcrustáceo A. salina e o de inibição da bioluminescência por 15 min para a bactéria A. fischeri. O modelo estatístico de dose-resposta não paramétrico log-logístico foi utilizado para obter as concentrações efetivas (CE) de 50% e 10% para a NVP isolada e para o medicamento. Constatou-se que a NVP isolada afetou a viabilidade das três espécies estudadas, porém, o medicamento à base de NVP não foi tóxico para A. salina. Ressalta-se que a CE50% de NVP diferiu estatisticamente entre o IFA e o medicamento para A. fischeri e A. salina. Observou-se também que há uma estreita faixa de concentração entre o aparecimento dos primeiros efeitos observáveis e dos efeitos tóxicos de NVP nessas espécies. Isso reforça a importância do estudo e do controle de lançamento desse IFA no ambiente. Por fim, concluiu-se que é possível implementar o monitoramento da toxicidade ambiental de micropoluentes na rotina industrial, utilizando testes de toxicidade padronizados e economicamente acessíveis, que oferecem rapidez e praticidade na análise de efluentes.

Biografia do Autor

Leonardo Alvarenga de Paula Freitas, Fundação Ezequiel Dias

Titulação máxima (concluída ou em andamento) / Instituição: Mestrando em Biotecnologia - Fundação Ezequiel Dias
Vínculo Institucional Atual / Cargo: Fundação Ezequiel Dias - Servidor Público - Farmacêutico Analista e Pesquisador de Saúde e Tecnologia do Serviço de Desenvolvimento Analítico e Estudo de Estabilidade da Divisão de Desenvolvimento de Medicamentos da Diretoria Industrial - Responsável Técnico Assistente da Diretoria Industrial

Izabela Cristina Dias Vaz, Universidade Federal de Minas Gerais

Analista Ambiental registrada no CRBio4, possuo 8 anos de experiência na área de limnologia. Especificadamente presto serviços de análises sistemática e taxonômica de zooplâncton, cianobactérias e microalgas.

Francisco Antônio Rodrigues Barbosa, Universidade Federal de Minas Gerais

Possui graduação em História Natural pela Universidade Federal de Minas Gerais (1973), mestrado em Ecologia e Recursos Naturais pela Universidade Federal de São Carlos (1979), doutorado em Ecologia e Recursos Naturais pela Universidade Federal de São Carlos (1981) e pós-doutorado em ecofisiologia de algas pelo Institute of Freshwater Ecology-Inglaterra. Atualmente é pesquisador 1 B do Conselho Nacional de Desenvolvimento Científico e Tecnológico, professor titular da Universidade Federal de Minas Gerais e coordenador do curso de especialização em Gerenciamento municipal de recursos hídricos do ICB/UFMG. 

Marcos Paulo Gomes Mol, Fundação Ezequiel Dias

Formado em Engenharia Ambiental pela Universidade Federal de Ouro Preto - UFOP (2006), Mestre (2011) e Doutor (2016) em Saneamento e Meio Ambiente pela Universidade Federal de Minas Gerais - UFMG; realizou doutorado sanduíche na London School of Hygiene and Tropical Medicine, UK (2015-2016), sob tutoria do Prof. Sandy Cairncross. Foi coordenador da Unidade de Gestão Ambiental da Fundação Ezequiel Dias (FUNED) em Belo Horizonte, (2007 a 2015) e atualmente é pesquisador da FUNED, coordenando o grupo de Pesquisa Saúde e Meio Ambiente, credenciado no CNPq. É docente no programa de Mestrado Profissional em Biotecnologia da FUNED.

Sérgia Maria Starling Magalhães, Universidade Federal de Minas Gerais

Graduação em Farmácia pela Universidade Federal de Minas Gerais (1986), mestrado em Química pela Universidade Federal de Minas Gerais (1991) e doutorado em Química pela Universidade Federal de Minas Gerais (1996). Atualmente é professor associado da Universidade Federal de Minas Gerais. Atua na área de Farmácia, com ênfase em Saúde coletiva e ambiente. Atua principalmente nos seguintes temas: estudos de utilização de medicamentos e meio ambiente e saúde. Coordena laboratório de análise de água da instituição e desenvolve pesquisas na área de biodegradação/biorremoção de poluentes do meio aquático usando cianobactérias.

Micheline Rosa Silveira, Universidade Federal de Minas Gerais

Graduada em Fármacia, com Habilitação em Análises Clínicas pela Universidade Federal de Ouro Preto(1995), com mestrado (1997) e doutorado (2002) em Ciências Biológicas (Fisiologia e Farmacologia) pela Universidade Federal de Minas Gerais (UFMG). Docente da UFMG desde 2006. Professora Associada do Departamento de Farmácia Social - UFMG. Pesquisadora colaboradora no Grupo de Pesquisa em Farmacoepidemiologia (GPFE) da Faculdade de Farmácia - UFMG. Tem experiência, nas áreas de Medicamentos e Assistência Farmacêutica, com ênfase em Assistência Farmacêutica e Doenças Infecciosas. Atualmente Vice-Diretora da Faculdade de Farmácia da UFMG.

Referências

Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A., Shar, G. A., Tahir, M. A. & Iqbal M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Sci. Total Environ. 626: 1295-1309. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.066

Amarante, C. B., Müller, A. H., Póvoa, M. M. & Dolabela, M. F. (2011) Estudo fitoquímico biomonitorado pelos ensaios de toxicidade frente à Artemia salina e de atividade antiplasmódica do caule de aninga (Montrichardia linifera). Acta Amazonica. 41, 3, 431-434. DOI: https://doi.org/10.1590/S0044-59672011000300015>

ANSES - Agence Nationale de Securite Sanitaire. (2013). National analysis campaign on drug residues in water intended for human consumption. Retrieved May 6, 2020, from www.anses.fr/en/content/national-analysis-campaign-drug-residues-water-results-line-expectation.

Awodele, O., Popoola, T., Rotimi, K., Ikumawoyi, V. & Okunowo, W. (2015). Antioxidant modulation of nevirapine induced hepatotoxicity in rats. Interdisciplinary Toxicology, 8(1), 8–14. DOI: https://doi.org/0.1515/intox-2015-0002

BIO Intelligence Service. (2013). Study on the environmental risks of medicinal products, Final Report prepared for Executive Agency for Health and Consumers.

Boehringer Ingelheim, Vetmedica. Safety data sheet United States nevirapine. Version 1. (2015). Retrived 2020, from https://www.bi-vetmedica.com/sites/default/files/MSDS/nevirapine-sds-us.pdf

Boehringer Ingelheim, Viramune® (nevirapine) Tablets/Viramune® (nevirapine) oral suspension, U.S. prescribing information. (2019) Retrived 2020, from https://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Viramune/Viramune.pdf

Boxall, A. B. A., Keller, V. D. J., Strau, J. O., Monteiro, S. C., Fussell, R. & Williams, R. J. (2014). Exploiting monitoring data in environmental exposure modelling and risk assessment of pharmaceuticals. Environment International, 73: 176-185. DOI: https://doi.org/10.1016/j.envint.2014.07.018.

Costa, C. R., Olivi P., Botta, C. M. R. & Espindola, E. L. G. (2008). Toxicity in aquatic environments: Discussion and evaluation methods. Química Nova, 31: 1820-1830. DOI: https://doi.org/10.1590/S0100-40422008000700038.

Czech, B., Jośko, I. & Oleszczuk, P.( 2014). Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and Environmental Safety, 104: 247-253. DOI: https://doi.org/10.1016/j.ecoenv.2014.03.024

Darienko, T., Rad-Menéndez, C., Campbell, C., & Pröschold, T. (2019). Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov. Systematics and Biodiversity, 17(8), 811–829. DOI: https://doi.org/10.1080/14772000.2019.1690597

Das, K., Martinez, S. E., Bauman, J. D. & Arnold, E. (2012). HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nature Structural & Molecular Biology, 19: 253–259. DOI: https://doi.org/10.1038/nsmb.2223

de García, S. O., García-Encina, P. A. & Irusta-Mata, R. (2016). Dose-response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products. Ecotoxicology, 25: 141– 790 162. DOI: https://doi.org/10.1007/s10646-015-1576-8

del Valle, L. G., Hernández, R. G. & Ávila, J. P. (2013). Oxidative stress associated to disease progression and toxicity during antiretroviral therapy in human immunodeficiency virus infection. Journal of Virology & Microbiology, 2013, 279685, 15. DOI: https://doi.org/10.5171/2013.279685

Dong, Y., Fang, Z., Xu, Y., Wang, Q. & Zou, X. (2019). The toxic effects of three active pharmaceutical ingredients (APIs) with different efficacy to Vibrio fischeri. Emerg. Contam. 5: 297-302. DOI: https://doi.org/10.1016/j.emcon.2019.08.004

Du, J., Yuan, Y., Si, T., Lian, J. & Zhao, H. (2012). Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 40: 142. DOI: https://doi.org/10.1093/nar/gks549

Dunn, A. K. (2012). Vibrio fischeri metabolism: symbiosis and beyond. Advances in microbial physiology, 61: 37–68. https://doi.org/10.1016/B978-0-12-394423-8.00002-0

Fernández, L. P., Brasca, R., Attademo, A. M., Peltzer, P. M., Lajmanovich, R. C. & Culzoni, M. J. (2020). Bioaccumulation and glutathione S-transferase activity on Rhinella arenarum tadpoles after 813 short-term exposure to antiretrovirals. Chemosphere, 246. 125830 DOI: https://doi.org/10.1016/j.chemosphere.2020.125830

Geiger, E., Gausterer, R. H. & Saçan, M. T. (2016). Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicology and Environmental Safety, 129: 189-198. DOI: https://doi.org/10.1016/j.ecoenv.2016.03.032

GHS (2019) Globally Harmonized System of Classification and Labelling of Chemicals. Eighth Revised Edition, United Nations, New York, DOI: https://doi.org/10.18356/f8fbb7cb-en

González, M. A., Proschold, T., Palacios, Y., Aguayo, P., Inostroza, I., & Gomez, P. I. (2013). Taxonomic identification and lipid production of two Chilean Chlorella-like strains isolated from a marine and an estuarine coastal environment. AoB Plants, 5(0), plt020–plt020. DOI: https://doi.org/10.1093/aobpla/plt020

González-González, R. B., Sharma, A., Parra-Saldívar, R., Ramirez-Mendoza, R. A., Bilal, M. & Iqbal, H. M. N. (2022). Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials. J Hazard Mater. 5; 423 (Pt B):127145. DOI: https://doi.org/1010.1016/j.jhazmat.2021.127145.

Gupta, B. P., Lama, T. K., Adhikari, A., Shrestha, A., Rauniyar, R., Sapkota, B., Thapa, S., Shrestha, S., Gupta, P. P. & Manandhar, K. D. (2016). First report of hepatitis E virus viremia in healthy blood donors from Nepal. Virus Disease, 27: 324–326. DOI: https://doi.org/10.1007/s13337-016-0331-y

Hube, S. & Wu, B. (2021) Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: A review, Science of The Total Environment, 779,146545. DOI: https://doi.org/10.1016/j.scitotenv.2021.146545

Hulgan, T., Morrow, J., D’Aquila, R. T., Raffanti, S., Morgan, M., Rebeiro, P. & Haas, D. W. (2003). Oxidant stress is increased during treatment of human immunodeficiency virus infection. Clinical Infectious Diseases, 37:1711–7. DOI: https://doi.org/10.1086/379776

ISO 11348-3. (2007) Water quality – determination of the inhibitory effect of waste samples on the light emission of Vibrio fischeri (luminescent bacteria test) – part 3: method using freeze-dried bacteria. Geneva. International Organization for Standardization.

Jacob, R. S., Santos, L. V., Souza, A. F. & Lange, L. C. (2016). A toxicity assessment of 30 pharmaceuticals using Aliivibrio fischeri: a comparison of the acute effects of different formulations. Environmental tecnology, 37: 2760-2767. DOI: https://doi.org/10.1080/09593330.2016.1164249

Jain, V., Hartogensis, W., Bacchetti, P., Hunt, P. W., Hatano, H., Sinclair, E., Epling, L., Lee, T. H., Busch, M. P., McCune, J. M., Pilcher, C. D., Hecht. F. M. & Deeks, S. G. (2013). Antiretroviral therapy initiated within 6 months of HIV infection is associated with lower T-cell activation and smaller HIV reservoir size. J. Infect. Dis, 208: 1202–1211. DOI: https://doi.org/10.1093/infdis/jit311.

Jos, A., Repetto, G., Rios, J. C., Hazen, M. J., Molero, M. L., del Peso, A., Salguero, M., Fernández-Freire, P., Pérez-Martı́n, J. M. & Cameán A. (2003). Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicology in Vitro, 17: 525-532. DOI: https://doi.org/10.1016/S0887-2333(03)00119-X

Kaiser, L. E. (1998). Correlations of vibrio fischeri bacteria test data with bioassay data for other organisms. Environmental Health Perspectives, 106 (2). 583-591. Doi: https://doi.org/10.1289/ehp.98106583

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J. & Bolton, E. E. (2019). PubChem 2019 update: improved access to chemical 871 data. Nucleic acids research, 47: 1102-1109. DOI: https://doi.org/10.1093/nar/gky1033

K'oreje, K. O., Demeestere, K., De Wispelaere, P., Vergeynst, L., Dewulf, J., Van Langenhove, H. (2012). From multi-residue screening to target analysis of pharmaceuticals in water: Development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya. Sci. Total Environ. 437: 153-164. DOI: https://doi.org/10.1016/j.scitotenv.2012.07.052

K'oreje, K.O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H. & Demeestere, K. (2016). Occurrence Patterns of Pharmaceutical Residues in Wastewater, Surface Water and Groundwater of Nairobi and Kisumu City, Kenya. Chemosphere, 149: 238-244. DOI: https://doi.org/10.1016/j.chemosphere.2016.01.095

Kroeger, M. B. S., Rouze, C. A., Taneyhill, L. A., Smith, N. A., Hughes, S. H., Boyer, P. L., Janssen, P. A. J., Moereels, H., Koymans, L., Arnold, E., Ding, J., Das, K., Zhang, W., Michejda, C. J. & Smith Jr, R. H. (1995). Molecular modeling studies of HIV-1 reverse transcriptase nonnucleoside inhibitors: Total energy of complexation as a predictor of drug placement and activity. Protein Science, 4:2203-2222. DOI: https://doi.org/10.1002/pro.5560041026

Kümmerer, K. (2009). Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75: 417-434. DOI: https://doi.org/10.1016/j.Chemosphere.2008.11.086

Leitão, J. M. M. & Silva, J. C. G. E. (2010). Firefly luciferase inhibition. Journal of Photochemistry and Photobiology B: Biology, 101: 1-8. DOI: https://doi.org/10.1016/j.jphotobiol.2010.06.015

Li, T., Xu, G., Rong, J., Chen, H., He, C., Giordano, M., Wang, Q. (2016). The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. Journal of Plant Physiology, 195: 73-79. DOI: https://doi.org/10.1016/j.jplph.2016.03.006

Libralato, G., Prato, E., Migliore, L., Cicero, A. & Manfra, L. (2016). A review of toxicity testing protocols and endpoints with Artemia spp. Ecolological Indicators, 69: 35-49. DOI: https://doi.org/10.1016/j.ecolind.2016.04.017

Lu, Y., Xu, X., Meng, C., Zhou, J., Sheng, J., Wu, C. &, Xu, S. (2013). The toxicity assay of Artemia salina as a biological model for the preliminary toxic evaluation of chemical pollutants. Advanced Materials Research, 726–731, 230–233. DOI: https://doi.org/10.4028/www.scientific.net/AMR.726-731.230

Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S. & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment, 473-474, 619–641. DOI: https://doi.org/10.1016/j.scitotenv.2013.12.065.

Marques, S. M. & Silva, J. C. G. E. (2009). Firefly bioluminescence: A mechanistic approach of luciferase catalyzed reactions. IUBMB Life, 61: 6-17. DOI: https://doi.org/10.1002/iub.134

Martins, A. C. R., da Costa, J. K. N., Herbert, A., Farias, F. R. S., Rezende, M., Kozlowski Junior, V. A. & de Geus, J. L. (2021) Toxicity assessment of mastic and pomegranate tinctures using the Artemia salina bioassay. Research, Society and Development, [S. l.], 10, 3, e5201031375. DOI: https://doi.org/10.33448/rsd-v10i3.13751.

Meyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D. & McLaughlin, J. (1982). Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Medica, 45: 31–34. DOI: https://doi.org/10.1055/s-2007-971236

Minagh, E., Hernan, R., O'Rourke, K., Lyng, F. M. & Davoren, M. (2009). Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotoxicology and environmental safety, 72: 434–440. DOI: https://doi.org/10.1016/j.ecoenv.2008.05.002

Minguez, L., Pedelucq, J., Farcy, E., Ballandonne, C., Budzinski, H. & Halm-Lemeillz, M. P. (2016). Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environmental Science and Pollution Research, 23: 4992–5001. DOI: https://doi.org/10.1007/s11356-014-3662-5

Ngumba, E., Gachanja, A. & Tuhkanen, T. (2016). Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Science of the Total Environ, 539: 206–213. DOI: https://doi.org/10.1016/j.scitotenv.2015.08.139

Nie, X., Wang, X., Chen, J., Zitko, V. & An T. (2008). Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin. Environmental Toxicology and Chemistry, 27: 168-173. DOI: https://doi.org/10.1897/07-028.1

Nunes-Halldorson, V. S. & Duran, N. L. (2003). Bioluminescent bacteria: lux genes as environmental biosensors. Braz. J. Microbiol., 34: 91-96. DOI: https://doi.org/10.1590/S1517-83822003000200001

Nunes, B. S., Carvalho, F. D., Guilhermino, L. M. & Van Stappen, G. (2006). Use of the genus Artemia in ecotoxicity testing. Environmental pollution, 144: 453–462. DOI: https://doi.org/10.1016/j.envpol.2005.12.037

Oliveira, G. A. R., Leme, D. M., de Lapuente, J., Brito, L. B., Porredón, C., Rodrigues, L. B., Brull, N., Serret, J. T., Borràs, M., Disner, G. R., Cestari, M. M. & Oliveira, D. P. (2018). A test battery for assessing the ecotoxic effects of textile dyes. Chem Biol Interact. 1;291:171-179. Doi: https://doi.org/10.1016/j.cbi.2018.06.026.

Onbasili, D. & Duman, F. (2010). Acute toxicity of some insecticides on Artemia salina and Daphnia magna. Fresenius Environmental Bulletin. 19 (11): 2608-2610

Organisation for Economic Co-operation and Development – OECD. (2011). Guidelines for testing chemicals freshwater alga and cyanobacteria growth inhibition test. 201. Retrived from https://www.oecd-ilibrary.org/docserver/9789264069923-en.pdf?expi

Parvez, B. S., Venkataraman, C. & Mukherji, S. (2005). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32, 265 – 268. Doi: https://doi.org/10.1016/j.envint.2005.08.022

Pavlaki, M. D., Pereira, R., Loureiro, S. & Soares, A. M. (2011). Effects of binary mixtures on the life traits of Daphnia magna. Ecotoxicology and environmental safety, 74: 99–110. Doi: https://doi.org/10.1016/j.ecoenv.2010.07.010

Prasse, C., Schlüsener, M. P., Schulz, R. & Ternes, T. A. (2010). Antiviral Drugs in Wastewater and Surface Waters: A New Pharmaceutical Class of Environmental Relevance? Environmental science & technology, 44: 1728-1735. Doi: https://doi.org/10.1021/es903216p

Rajabi, S., Ramazani, A., Hamidi, M. & Naji, T. (2015) Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J Pharm Sci 23, 20. Doi: https://doi.org/10.1186/s40199-015-0105-x

Ribo, J. M. (1997). Interlaboratory Comparison Studies of the Luminescent Bacteria Toxicity. Bioassay. Environmental Toxicology and Water Quality, 12(4), 283–294. Retrived 2020, from https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902141905826462

Rippka, R., Deruelles, J. & Waterbury, J. B. (1979). Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of sant General Microbiology, 111: 61. Doi: https://doi.org/10.1099/00221287-111-1-1

Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. (2015). Dose-Response Analysis Using R. PLoS ONE, 10: e0146021. Doi: https://doi.org/10.1371/journal.pone.0146021

Rodrigues, M. O., Gonçalves, A. M. M.,Gonçalves, F. J. M., Nogueira, H., Marques, J. C. & Abrantes, N.(2018). Effectiveness of a methodology of microplastics isolation for environmental monitoring in freshwater systems, Ecological Indicators, 89: 488-495, ISSN 1470-160X. Doi: https://doi.org/10.1016/j.ecolind.2018.02.038.

Roede, J. R. & Miller, G. W. 2014. Diquat. Encyclopedia of Toxicology, 2. 202-204. Doi: http://dx.doi.org/10.1016/B978-0-12-386454-3.00137-8

Shea, D. (2004). Transport and Fate of Toxicants in the Environment. A Textbook of Modern Toxicology, 479–499. Doi: https://doi.org/10.1002/0471646776.ch27

Silva, A., Santos, L. H., Delerue-Matos, C.& Figueiredo, A. S. 2014. Impact of excipients in the chronic toxicity of fluoxetine on the alga Chlorella vulgaris. Environmental technology, 35: 3124-3129. Doi: https://doi.org/10.1080/09593330.2014.932438

Silva, S. R., Barbosa, F. A. R., Mol, M. P. G., Magalhães, S. M. S. (2019). Toxicity for Aquatic Organisms of Antiretroviral Tenofovir Disoproxil. Journal of Environmental Protection, 10: 1565-1577. Doi: https://doi.org/10.4236/jep.2019.1012093

Stewart, M., Olsen, G., Hickey, C. W., Ferreira, B., Jelić, A., Petrović, M., & Barcelo, D. (2014).A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Science of The Total Environment, 468-469, 202–210. Doi: https://doi.org/10.1016/j.scitotenv.2013.08.039:

van der Merwe, J., Steenekamp, J., Steyn, D. & Hamman, J. (2020). The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability. Pharmaceutics, 12, 393. Doi: https://doi.org/10.3390/pharmaceutics12050393

Vaňková, M. (2010). Biodegradability analysis of pharmaceuticals used in developing countries; screening with OxiTop ® - C 11073f., Doctoral thesis. Tampere University of Applied Sciences, Finland

Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment - a review. Science of the total environment, 429, 123-155. Doi: https://doi.org/10.1016/j.scitotenv.2012.04.028

Wang, L., Wang, H., Chen, X., Zhuang, Y., Yu, Z. & Zhou, T. (2018). Acclimation process of cultivating Chlorella vulgaris in toxic excess sludge extract and its response mechanism. The Science of the total environment, 628-629, 858–869. Doi: https://doi.org/10.1016/j.scitotenv.2018.02.020

Weyman, G. S., Rufli, H., Weltje, L., Salinas, E. R. & Hamitou, M. (2012). Aquatic toxicity tests with substances that are poorly soluble in water and consequences for environmental risk assessment. Environmental toxicology and chemistry, 31: 1662–1669. Doi: https://doi.org/10.1002/etc.1856

Wood, T. P., Duvenage, C. S. J. & Rohwer, E. (2015). The occurrence of anti-retroviral compounds used for HIV treatment in South African surface water. Environmental pollution, 199: 235-243. Doi: https://doi.org/10.1016/j.envpol.2015.01.030

Zakrzewski, S. F. (2002). Environmental toxicology. Oxford University Press. ISBN-13: 9780195148114

Downloads

Publicado

22/01/2022

Como Citar

DINIZ, J. S. .; FREITAS, L. A. de P. .; VAZ, I. C. D. .; BARBOSA, F. A. R. .; MOL, M. P. G. .; MAGALHÃES, S. M. S. .; SILVEIRA, M. R. . Os efeitos tóxicos do antirretroviral nevirapina e um medicamento à base de nevirapina para organismos aquáticos. Research, Society and Development, [S. l.], v. 11, n. 2, p. e19211225014, 2022. DOI: 10.33448/rsd-v11i2.25014. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25014. Acesso em: 23 nov. 2024.

Edição

Seção

Ciências da Saúde