Potencial del uso de biocombustibles babaçu como combustible de aviación
DOI:
https://doi.org/10.33448/rsd-v11i1.25226Palabras clave:
Biocombustibles a aviación; Biocombustibles; Babaçu; Culturas tropicales.Resumen
Mediante una revisión de la literatura, se evaluó el potencial y las dificultades del uso de biocombustibles del cultivo de babasú para su uso como biocombustible de aviación. El babasú es uno de los cultivos más importantes para la agricultura familiar en el norte y noreste de Brasil debido a su gran potencial de uso. Se puede obtener biodiésel de buena calidad a partir del aceite de babasú mediante transesterificación, sin embargo, no tiene las propiedades necesarias para ser utilizado como biocombustible de aviación. Se analizaron investigaciones con biocombustibles de este cultivo y con cultivos con perfil orgánico similar señalando la viabilidad de estos biocombustibles en mezcla con queroseno de aviación, sin embargo, estos biocombustibles presentan varios problemas cuando se usan solos. Entre las propiedades fisicoquímicas analizadas, el punto de congelación fue un factor crítico para no utilizar estos biocombustibles. Esta revisión señala los mejores métodos y resultados para mejorar las propiedades fisicoquímicas de los biocombustibles de babasú para su uso como combustible de aviación y presenta un factor social importante para el uso de esta palma.
Citas
Ali, O. M., Mamat, R., & Faizal, C. K. M. (2013). Review of the effects of additives on biodiesel properties, performance, and emission features. Journal of Renewable and Sustainable Energy, 5(1). https://doi.org/10.1063/1.4792846
ANP/ABIOVE - Coordenadoria de Economia e Estatística. (2019). Produção de biodiesel por matéria-prima - 01/2008 - 04/2019. http://abiove.org.br/estatisticas/biodiesel-producao-por-tipo-de-materia-prima/
ANP. (2019). Resolution no 778 of April 05. National Agency of Petroleum, Natural Gas and Biofuels. http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2019/abril&item=ranp-778-2019&export=pdf
Atmanli, A. (2016). Comparative analyses of diesel-waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel, 176, 209–215. https://doi.org/10.1016/j.fuel.2016.02.076
Baroutian, S., Aroua, M. K., Raman, A. A. A., Shafie, A., Ismail, R. A., & Hamdan, H. (2013). Blended aviation biofuel from esterified Jatropha curcas and waste vegetable oils. Journal of the Taiwan Institute of Chemical Engineers, 44(6), 911–916. https://doi.org/10.1016/j.jtice.2013.02.007
Bergmann, J. C., Tupinambá, D. D., Costa, O. Y. A., Almeida, J. R. M., Barreto, C. C., & Quirino, B. F. (2013). Biodiesel production in Brazil and alternative biomass feedstocks. Renewable and Sustainable Energy Reviews, 21, 411–420. https://doi.org/10.1016/j.rser.2012.12.058
Bergthorson, J. M., & Thomson, M. J. (2015). A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews, 42, 1393–1417. https://doi.org/10.1016/j.rser.2014.10.034
Biocombustíveis aeronáuticos Progressos e desafios. (2010).
BIODIESELBR. (2014). Realizado voo transatlântico usando bioQAV de óleo de cozinha. https://www.biodieselbr.com/noticias/biocombustivel/bioqav/realizado-voo-transatlantico-bioqav-oleo-cozinha-190514
Blakey, S., Rye, L., & Wilson, C. W. (2011). Aviation gas turbine alternative fuels: A review. Proceedings of the Combustion Institute, 33(2), 2863–2885. https://doi.org/10.1016/j.proci.2010.09.011
Choi, I. H., Lee, J. S., Kim, C. U., Kim, T. W., Lee, K. Y., & Hwang, K. R. (2018). Production of bio-jet fuel range alkanes from catalytic deoxygenation of Jatropha fatty acids on a WOx/Pt/TiO2 catalyst. Fuel, 215(December 2017), 675–685. https://doi.org/10.1016/j.fuel.2017.11.094
Chuck, C. J., & Donnelly, J. (2014). The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. APPLIED ENERGY, 118, 83–91. https://doi.org/10.1016/j.apenergy.2013.12.019
Cremonez, P. A., Feroldi, M., De Araújo, A. V., Negreiros Borges, M., Weiser Meier, T., Feiden, A., & Gustavo Teleken, J. (2015). Biofuels in Brazilian aviation: Current scenario and prospects. In Renewable and Sustainable Energy Reviews (Vol. 43, pp. 1063–1072). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.11.097
Cui, Q., & Li, Y. (2017). Will airline efficiency be affected by “Carbon Neutral Growth from 2020” strategy? Evidences from 29 international airlines. Journal of Cleaner Production, 164(2017), 1289–1300. https://doi.org/10.1016/j.jclepro.2017.07.059
Rós, P. C. M., Silva, W. C. e., Grabauskas, D., Perez, V. H., & de Castro, H. F. (2014). Biodiesel from babassu oil: Characterization of the product obtained by enzymatic route accelerated by microwave irradiation. Industrial Crops and Products, 52, 313–320. https://doi.org/10.1016/j.indcrop.2013.11.013
Oliveira, V. F., Parente, E. J. S., Cavalcante, C. L., & Luna, F. M. T. (2018). Short-chain esters enriched biofuel obtained from vegetable oil using molecular distillation. Canadian Journal of Chemical Engineering, 96(5), 1071–1078. https://doi.org/10.1002/cjce.23044
Oliveira, V. F., Parente, E. J. S., Manrique-Rueda, E. D., Cavalcante, C. L., & Luna, F. M. T. (2020). Fatty acid alkyl esters obtained from babassu oil using C1–C8 alcohols and process integration into a typical biodiesel plant. Chemical Engineering Research and Design, 160, 224–232. https://doi.org/10.1016/j.cherd.2020.05.028
Deane, J. P., & Pye, S. (2018). Europe’s ambition for biofuels in aviation - A strategic review of challenges and opportunities. Energy Strategy Reviews, 20(October 2017), 1–5. https://doi.org/10.1016/j.esr.2017.12.008
Deane, P., O Shea, R., & Ó Gallachóir, B. (2015). Biofuels for Aviation. Framework Program for Research and Technological Development, April. http://www.innoenergy.com/wp-content/uploads/2016/03/RREB_Biofuels_in_Aviation_Draft_Final.pdf
dos Santos Alves, C. E., Belarmino, L. C., & Padula, A. D. (2017). Feedstock diversification for biodiesel production in Brazil: Using the Policy Analysis Matrix (PAM) to evaluate the impact of the PNPB and the economic competitiveness of alternative oilseeds. Energy Policy, 109(July), 297–309. https://doi.org/10.1016/j.enpol.2017.07.009
F. C. Silva A, K. S. B., & Cavalcante A, B , H. C. Louzeiro A, B , K. R. M. Moura A , A. P. Maciel A , L. E. B. Soledade B, A. G. S. B. (2010). Production of biodiesel from babassu oil using methanol-ethanol blends. Ecletica Quimica, 35(1), 47–54. https://doi.org/10.1590/S0100-46702010000100006
Filimonau, V., & Högström, M. (2017). The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study. Journal of Air Transport Management, 63, 84–94. https://doi.org/10.1016/j.jairtraman.2017.06.002
Girardi, J. C., Bariccatti, R. A., de Souza, S. N. M., Amaral, C. Z. do, & Guedes, C. L. B. (2021). Natural compounds as antifreeze additives to improve babassu biodiesel. Fuel, 289(October), 119746. https://doi.org/10.1016/j.fuel.2020.119746
Gonçalves F dos R, Borges LEP, F. M. (2011). Aviation fuels:perspectives and Future.
Gutiérrez-Antonio, C., Gómez-Castro, F. I., de Lira-Flores, J. A., & Hernández, S. (2017). A review on the production processes of renewable jet fuel. Renewable and Sustainable Energy Reviews, 79(May), 709–729. https://doi.org/10.1016/j.rser.2017.05.108
Hajjari, M., Tabatabaei, M., Aghbashlo, M., & Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production : A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72(January), 445–464. https://doi.org/10.1016/j.rser.2017.01.034
IATA. (2017). Aviation Benefits 2017. International Air Transport Association, 68. https://doi.org/10.1111/j.1525-1594.2009.00929.x
IEA. (2019). world energy balances: overview (2019 edition). in international energy agency (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004
Imtenan, S., Masjuki, H. H., Varman, M., Rizwanul Fattah, I. M., Sajjad, H., & Arbab, M. I. (2015). Effect of n-butanol and diethyl ether as oxygenated additives on combustion-emission-performance characteristics of a multiple cylinder diesel engine fuelled with diesel-jatropha biodiesel blend. Energy Conversion and Management, 94, 84–94. https://doi.org/10.1016/j.enconman.2015.01.047
International Air Transport Association (IATA). (2015). Guidance Material for Sustainable Aviation Fuel Management (2nd Editio). https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/iata20guidance20material20for20saf.pdf
Kandaramath Hari, T., Yaakob, Z., & Binitha, N. N. (2015). Aviation biofuel from renewable resources: Routes, opportunities and challenges. In Renewable and Sustainable Energy Reviews (Vol. 42, pp. 1234–1244). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.10.095
Knothe, G., & Dunn, R. O. (2009). A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry. JAOCS, Journal of the American Oil Chemists’ Society, 86(9), 843–856. https://doi.org/10.1007/s11746-009-1423-2
Lima, J. R. D. O., Da Silva, R. B., Da Silva, C. C. M., Dos Santos, L. S. S., Dos Santos, J. R., Moura, E. M., & De Moura, C. V. R. (2007). Biodiesel de babaçu (Orbignya sp.) obtido por via etanólica. Quimica Nova, 30(3), 600–603. https://doi.org/10.1590/S0100-40422007000300019
Lin, C.-H., Chen, Y.-K., & Wang, W.-C. (2020). The production of bio-jet fuel from palm oil derived alkanes. Fuel, 260(July 2019), 116345. https://doi.org/10.1016/j.fuel.2019.116345
Liu, G., Yan, B., & Chen, G. (2013). Technical review on jet fuel production. Renewable and Sustainable Energy Reviews, 25, 59–70. https://doi.org/10.1016/j.rser.2013.03.025
Llamas, A., Al-Lal, A. M., Hernandez, M., Lapuerta, M., & Canoira, L. (2012). Biokerosene from babassu and camelina oils: Production and properties of their blends with fossil kerosene. Energy and Fuels, 26(9), 5968–5976. https://doi.org/10.1021/ef300927q
Llamas, A., García-Martínez, M. J., Al-Lal, A. M., Canoira, L., & Lapuerta, M. (2012). Biokerosene from coconut and palm kernel oils: Production and properties of their blends with fossil kerosene. Fuel, 102, 483–490. https://doi.org/10.1016/j.fuel.2012.06.108
Lu, Y., Pan, J., Fan, B., Otchere, P., Chen, W., & Cheng, B. (2020). Research on the application of aviation kerosene in a direct injection rotary engine – Part 2: Spray combustion characteristics and combustion process under optimized injection strategies. Energy Conversion and Management, 203(October 2019), 112217. https://doi.org/10.1016/j.enconman.2019.112217
Mahmudul, H. M., Hagos, F. Y., Mamat, R., Adam, A. A., Ishak, W. F. W., & Alenezi, R. (2017). Production , characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews, 72(April 2016), 497–509. https://doi.org/10.1016/j.rser.2017.01.001
Marsh, G. (2008). Biofuels: aviation alternative? Renewable Energy Focus, 9(4), 48–51. https://doi.org/10.1016/S1471-0846(08)70138-0
Mcgrath, J. F., Goss, K. F., Brown, M. W., Bartle, J. R., & Abadi, A. (2016). Aviation biofuel from integrated woody biomass in southern Australia. https://doi.org/10.1002/wene.221
Monirul, I. M., Kalam, M. A., Masjuki, H. H., Zulkifli, N. W. M., Shahir, S. A., Mosarof, M. H., & Ruhul, A. M. (2017). Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions. Renewable Energy, 101, 702–712. https://doi.org/10.1016/j.renene.2016.09.020
Nie, G., Dai, Y., Liu, Y., Xie, J., Gong, S., Afzal, N., Zhang, X., Pan, L., & Zou, J. J. (2019). High yield one-pot synthesis of high density and low freezing point jet-fuel-ranged blending from bio-derived phenol and cyclopentanol. Chemical Engineering Science, 207, 441–447. https://doi.org/10.1016/j.ces.2019.06.050
No, R. A. N. P., & Dou, D. E. (2009). Ranp 5 - 2009. 12.
Olcay H, Malina R, Upadhye AA, Hileman JI, Huber GW, B. S. (2018). Technoeconomic and environmental evaluation of producing chemicals and drop-in aviation biofuels via aqueous phase processing. Energy & Environmental Science. https://doi.org/https:// doi.org/10.1039/C7EE03557H
Oliveira, L. E., Giordani, D. S., Paiva, E. M., De Castro, H. F., & Da Silva, M. L. C. P. (2013). Kinetic and thermodynamic parameters of volatilization of biodiesel from babassu, palm oil and mineral diesel by thermogravimetric analysis (TG). Journal of Thermal Analysis and Calorimetry, 111(1), 155–160. https://doi.org/10.1007/s10973-011-2163-8
processamento-materias-primas-2019 (1). (n.d.).
Ranucci, C. R., Alves, H. J., Monteiro, M. R., Kugelmeier, C. L., Bariccatti, R. A., Rodrigues de Oliveira, C., & Antônio da Silva, E. (2018). Potential alternative aviation fuel from jatropha (Jatropha curcas L.), babassu (Orbignya phalerata) and palm kernel (Elaeis guineensis) as blends with Jet-A1 kerosene. Journal of Cleaner Production, 185, 860–869. https://doi.org/10.1016/j.jclepro.2018.03.084
Reimer, J., & Zheng, X. (2016). Economic analysis of an aviation bioenergy supply chain. December. https://doi.org/10.1016/j.rser.2016.12.036
Rodrigues, J. D. A., Cardoso, F. D. P., Lachter, E. R., Estevão, L. R. M., Lima, E., & Nascimento, R. S. V. (2006). Correlating chemical structure and physical properties of vegetable oil esters. JAOCS, Journal of the American Oil Chemists’ Society, 83(4), 353–357. https://doi.org/10.1007/s11746-006-1212-0
Rodrigues Ranucci, C., José Alves, H., da Silva, C., Roberto Monteiro, M., Andressa dos Santos, K., Aparecido Bariccatti, R., & Antonio da Silva, E. (2014). OBTENÇÃO DE BIOQUEROSENE DE PINHÃO-MANSO (JatrophacurcasL.) e suas misturas ao querosene fóssil obtaining biokerosene of jatropha (jatrophacurcasl.) and their mixtures to fossil kerosene. In Revista Tecnológica-Edição Especial.
Santos, J. R. De J; SOUZA, A. G. De; SILVA, F. C. (2008). BIODIESEL DE BABAÇU : Avaliação Térmica , Oxidativa e Misturas Binárias.
Santos, N. A., Tavares, M. L. A., Rosenhaim, R., Silva, F. C., Fernandes, V. J., Santos, I. M. G., & Souza, A. G. (2007). Thermogravimetric and calorimetric evaluation of babassu biodiesel obtained by the methanol route. Journal of Thermal Analysis and Calorimetry, 87(3), 649–652. https://doi.org/10.1007/s10973-006-7765-1
Schäfer, A. W., & Waitz, I. A. (2014). Air transportation and the environment. Transport Policy, 1–4. https://doi.org/10.1016/j.tranpol.2014.02.012
Silva, M. C. D., Da Silva, L. M., Santos, N. A., Conceição, M. M., Souza, A. G., & Dos Santos, A. O. (2011). Study of ethylic Babassu biodiesel properties at low temperatures. Journal of Thermal Analysis and Calorimetry, 106(2), 363–367. https://doi.org/10.1007/s10973-011-1474-0
Simões, A. F., & Schaeffer, R. (2005). The Brazilian air transportation sector in the context of global climate change: CO 2 emissions and mitigation alternatives. Energy Conversion and Management, 46(4), 501–513. https://doi.org/10.1016/j.enconman.2004.06.017
Verma, P., & Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063–1071. https://doi.org/10.1016/j.rser.2016.04.054
Wang, W. C., & Tao, L. (2016). Bio-jet fuel conversion technologies. Renewable and Sustainable Energy Reviews, 53, 801–822. https://doi.org/10.1016/j.rser.2015.09.016
Wilson, G. R., Edwards, T., Corporan, E., & Freerks, R. L. (2013). Certification of alternative aviation fuels and blend components. Energy and Fuels, 27(2), 962–966. https://doi.org/10.1021/ef301888b
Yang, J., Xin, Z., He, Q. (Sophia), Corscadden, K., & Niu, H. (2019). An overview on performance characteristics of bio-jet fuels. In Fuel (Vol. 237, pp. 916–936). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2018.10.079
Yilmaz, N., & Atmanli, A. (2017). Sustainable alternative fuels in aviation. Energy, 140, 1378–1386. https://doi.org/10.1016/j.energy.2017.07.077
Yilmaz, N., & Morton, B. (2011). Comparative characteristics of compression ignited engines operating on biodiesel produced from waste vegetable oil. Biomass and Bioenergy, 35(5), 2194–2199. https://doi.org/10.1016/j.biombioe.2011.02.032
Zalla, O., Neto, S., Gonçalves, D., Bergara, S. D. F., Augusto, E., Batista, C., José, A., & Meirelles, D. A. (2019). Oil extraction from semi-defatted babassu bagasse with ethanol: Liquid-liquid equilibrium and solid-liquid extraction in a single stage. Journal of Food Engineering, 109845. https://doi.org/10.1016/j.jfoodeng.2019.109845
Zhang, C., Hui, X., Lin, Y., & Sung, C. J. (2016). Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 54, 120–138. https://doi.org/10.1016/j.rser.2015.09.056
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Julio Cezar Girardi; Reinaldo Aparecido Bariccatti ; Samuel Nelson Melegari de Souza ; Camila Zeni do Amaral; Carmen Luisa Barbosa Guedes ; Jonathan Baumi ; Caroline Milani Bertosse
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.