Potencial do uso de biocombustíveis de babassu como combustível para aviação
DOI:
https://doi.org/10.33448/rsd-v11i1.25226Palavras-chave:
Biocombustíveis para jato; Biocombustíveis; Babaçu; Culturas tropicais.Resumo
Através de uma revisão bibliográfica se avaliou o potencial e as dificuldades do uso de biocombustíveis provindos da cultura do babaçu para uso como biocombustível de aviação. O babaçu é uma das culturas mais importantes para a agricultura familiar no Norte e Nordeste do Brasil devido ao seu vasto potencial de uso. Do óleo de babaçu, por transesterificação, pode-se obter biodiesel de boa qualidade, no entanto, não se possui as propriedades necessárias para ser utilizado como biocombustível de aviação. Pesquisas com os biocombustíveis dessa cultura e com culturas com perfil orgânico semelhante foram analisadas apontando a viabilidade desses biocombustíveis como mistura ao querosene de aviação, no entanto, esses biocombustíveis apresentam diversos problemas quando utilizados isoladamente. Dentre as propriedades físico-químicas analisadas, o ponto de congelamento foi um fator crítico para a não utilização desses biocombustíveis. Esta revisão aponta os melhores métodos e resultados para melhorar as propriedades físico-químicas dos biocombustíveis de babaçu para uso como combustível de aviação e apresenta um importante fator social para o uso dessa palmeira.
Referências
Ali, O. M., Mamat, R., & Faizal, C. K. M. (2013). Review of the effects of additives on biodiesel properties, performance, and emission features. Journal of Renewable and Sustainable Energy, 5(1). https://doi.org/10.1063/1.4792846
ANP/ABIOVE - Coordenadoria de Economia e Estatística. (2019). Produção de biodiesel por matéria-prima - 01/2008 - 04/2019. http://abiove.org.br/estatisticas/biodiesel-producao-por-tipo-de-materia-prima/
ANP. (2019). Resolution no 778 of April 05. National Agency of Petroleum, Natural Gas and Biofuels. http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2019/abril&item=ranp-778-2019&export=pdf
Atmanli, A. (2016). Comparative analyses of diesel-waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel, 176, 209–215. https://doi.org/10.1016/j.fuel.2016.02.076
Baroutian, S., Aroua, M. K., Raman, A. A. A., Shafie, A., Ismail, R. A., & Hamdan, H. (2013). Blended aviation biofuel from esterified Jatropha curcas and waste vegetable oils. Journal of the Taiwan Institute of Chemical Engineers, 44(6), 911–916. https://doi.org/10.1016/j.jtice.2013.02.007
Bergmann, J. C., Tupinambá, D. D., Costa, O. Y. A., Almeida, J. R. M., Barreto, C. C., & Quirino, B. F. (2013). Biodiesel production in Brazil and alternative biomass feedstocks. Renewable and Sustainable Energy Reviews, 21, 411–420. https://doi.org/10.1016/j.rser.2012.12.058
Bergthorson, J. M., & Thomson, M. J. (2015). A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews, 42, 1393–1417. https://doi.org/10.1016/j.rser.2014.10.034
Biocombustíveis aeronáuticos Progressos e desafios. (2010).
BIODIESELBR. (2014). Realizado voo transatlântico usando bioQAV de óleo de cozinha. https://www.biodieselbr.com/noticias/biocombustivel/bioqav/realizado-voo-transatlantico-bioqav-oleo-cozinha-190514
Blakey, S., Rye, L., & Wilson, C. W. (2011). Aviation gas turbine alternative fuels: A review. Proceedings of the Combustion Institute, 33(2), 2863–2885. https://doi.org/10.1016/j.proci.2010.09.011
Choi, I. H., Lee, J. S., Kim, C. U., Kim, T. W., Lee, K. Y., & Hwang, K. R. (2018). Production of bio-jet fuel range alkanes from catalytic deoxygenation of Jatropha fatty acids on a WOx/Pt/TiO2 catalyst. Fuel, 215(December 2017), 675–685. https://doi.org/10.1016/j.fuel.2017.11.094
Chuck, C. J., & Donnelly, J. (2014). The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. APPLIED ENERGY, 118, 83–91. https://doi.org/10.1016/j.apenergy.2013.12.019
Cremonez, P. A., Feroldi, M., De Araújo, A. V., Negreiros Borges, M., Weiser Meier, T., Feiden, A., & Gustavo Teleken, J. (2015). Biofuels in Brazilian aviation: Current scenario and prospects. In Renewable and Sustainable Energy Reviews (Vol. 43, pp. 1063–1072). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.11.097
Cui, Q., & Li, Y. (2017). Will airline efficiency be affected by “Carbon Neutral Growth from 2020” strategy? Evidences from 29 international airlines. Journal of Cleaner Production, 164(2017), 1289–1300. https://doi.org/10.1016/j.jclepro.2017.07.059
Rós, P. C. M., Silva, W. C. e., Grabauskas, D., Perez, V. H., & de Castro, H. F. (2014). Biodiesel from babassu oil: Characterization of the product obtained by enzymatic route accelerated by microwave irradiation. Industrial Crops and Products, 52, 313–320. https://doi.org/10.1016/j.indcrop.2013.11.013
Oliveira, V. F., Parente, E. J. S., Cavalcante, C. L., & Luna, F. M. T. (2018). Short-chain esters enriched biofuel obtained from vegetable oil using molecular distillation. Canadian Journal of Chemical Engineering, 96(5), 1071–1078. https://doi.org/10.1002/cjce.23044
Oliveira, V. F., Parente, E. J. S., Manrique-Rueda, E. D., Cavalcante, C. L., & Luna, F. M. T. (2020). Fatty acid alkyl esters obtained from babassu oil using C1–C8 alcohols and process integration into a typical biodiesel plant. Chemical Engineering Research and Design, 160, 224–232. https://doi.org/10.1016/j.cherd.2020.05.028
Deane, J. P., & Pye, S. (2018). Europe’s ambition for biofuels in aviation - A strategic review of challenges and opportunities. Energy Strategy Reviews, 20(October 2017), 1–5. https://doi.org/10.1016/j.esr.2017.12.008
Deane, P., O Shea, R., & Ó Gallachóir, B. (2015). Biofuels for Aviation. Framework Program for Research and Technological Development, April. http://www.innoenergy.com/wp-content/uploads/2016/03/RREB_Biofuels_in_Aviation_Draft_Final.pdf
dos Santos Alves, C. E., Belarmino, L. C., & Padula, A. D. (2017). Feedstock diversification for biodiesel production in Brazil: Using the Policy Analysis Matrix (PAM) to evaluate the impact of the PNPB and the economic competitiveness of alternative oilseeds. Energy Policy, 109(July), 297–309. https://doi.org/10.1016/j.enpol.2017.07.009
F. C. Silva A, K. S. B., & Cavalcante A, B , H. C. Louzeiro A, B , K. R. M. Moura A , A. P. Maciel A , L. E. B. Soledade B, A. G. S. B. (2010). Production of biodiesel from babassu oil using methanol-ethanol blends. Ecletica Quimica, 35(1), 47–54. https://doi.org/10.1590/S0100-46702010000100006
Filimonau, V., & Högström, M. (2017). The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study. Journal of Air Transport Management, 63, 84–94. https://doi.org/10.1016/j.jairtraman.2017.06.002
Girardi, J. C., Bariccatti, R. A., de Souza, S. N. M., Amaral, C. Z. do, & Guedes, C. L. B. (2021). Natural compounds as antifreeze additives to improve babassu biodiesel. Fuel, 289(October), 119746. https://doi.org/10.1016/j.fuel.2020.119746
Gonçalves F dos R, Borges LEP, F. M. (2011). Aviation fuels:perspectives and Future.
Gutiérrez-Antonio, C., Gómez-Castro, F. I., de Lira-Flores, J. A., & Hernández, S. (2017). A review on the production processes of renewable jet fuel. Renewable and Sustainable Energy Reviews, 79(May), 709–729. https://doi.org/10.1016/j.rser.2017.05.108
Hajjari, M., Tabatabaei, M., Aghbashlo, M., & Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production : A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72(January), 445–464. https://doi.org/10.1016/j.rser.2017.01.034
IATA. (2017). Aviation Benefits 2017. International Air Transport Association, 68. https://doi.org/10.1111/j.1525-1594.2009.00929.x
IEA. (2019). world energy balances: overview (2019 edition). in international energy agency (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004
Imtenan, S., Masjuki, H. H., Varman, M., Rizwanul Fattah, I. M., Sajjad, H., & Arbab, M. I. (2015). Effect of n-butanol and diethyl ether as oxygenated additives on combustion-emission-performance characteristics of a multiple cylinder diesel engine fuelled with diesel-jatropha biodiesel blend. Energy Conversion and Management, 94, 84–94. https://doi.org/10.1016/j.enconman.2015.01.047
International Air Transport Association (IATA). (2015). Guidance Material for Sustainable Aviation Fuel Management (2nd Editio). https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/iata20guidance20material20for20saf.pdf
Kandaramath Hari, T., Yaakob, Z., & Binitha, N. N. (2015). Aviation biofuel from renewable resources: Routes, opportunities and challenges. In Renewable and Sustainable Energy Reviews (Vol. 42, pp. 1234–1244). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.10.095
Knothe, G., & Dunn, R. O. (2009). A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry. JAOCS, Journal of the American Oil Chemists’ Society, 86(9), 843–856. https://doi.org/10.1007/s11746-009-1423-2
Lima, J. R. D. O., Da Silva, R. B., Da Silva, C. C. M., Dos Santos, L. S. S., Dos Santos, J. R., Moura, E. M., & De Moura, C. V. R. (2007). Biodiesel de babaçu (Orbignya sp.) obtido por via etanólica. Quimica Nova, 30(3), 600–603. https://doi.org/10.1590/S0100-40422007000300019
Lin, C.-H., Chen, Y.-K., & Wang, W.-C. (2020). The production of bio-jet fuel from palm oil derived alkanes. Fuel, 260(July 2019), 116345. https://doi.org/10.1016/j.fuel.2019.116345
Liu, G., Yan, B., & Chen, G. (2013). Technical review on jet fuel production. Renewable and Sustainable Energy Reviews, 25, 59–70. https://doi.org/10.1016/j.rser.2013.03.025
Llamas, A., Al-Lal, A. M., Hernandez, M., Lapuerta, M., & Canoira, L. (2012). Biokerosene from babassu and camelina oils: Production and properties of their blends with fossil kerosene. Energy and Fuels, 26(9), 5968–5976. https://doi.org/10.1021/ef300927q
Llamas, A., García-Martínez, M. J., Al-Lal, A. M., Canoira, L., & Lapuerta, M. (2012). Biokerosene from coconut and palm kernel oils: Production and properties of their blends with fossil kerosene. Fuel, 102, 483–490. https://doi.org/10.1016/j.fuel.2012.06.108
Lu, Y., Pan, J., Fan, B., Otchere, P., Chen, W., & Cheng, B. (2020). Research on the application of aviation kerosene in a direct injection rotary engine – Part 2: Spray combustion characteristics and combustion process under optimized injection strategies. Energy Conversion and Management, 203(October 2019), 112217. https://doi.org/10.1016/j.enconman.2019.112217
Mahmudul, H. M., Hagos, F. Y., Mamat, R., Adam, A. A., Ishak, W. F. W., & Alenezi, R. (2017). Production , characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews, 72(April 2016), 497–509. https://doi.org/10.1016/j.rser.2017.01.001
Marsh, G. (2008). Biofuels: aviation alternative? Renewable Energy Focus, 9(4), 48–51. https://doi.org/10.1016/S1471-0846(08)70138-0
Mcgrath, J. F., Goss, K. F., Brown, M. W., Bartle, J. R., & Abadi, A. (2016). Aviation biofuel from integrated woody biomass in southern Australia. https://doi.org/10.1002/wene.221
Monirul, I. M., Kalam, M. A., Masjuki, H. H., Zulkifli, N. W. M., Shahir, S. A., Mosarof, M. H., & Ruhul, A. M. (2017). Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions. Renewable Energy, 101, 702–712. https://doi.org/10.1016/j.renene.2016.09.020
Nie, G., Dai, Y., Liu, Y., Xie, J., Gong, S., Afzal, N., Zhang, X., Pan, L., & Zou, J. J. (2019). High yield one-pot synthesis of high density and low freezing point jet-fuel-ranged blending from bio-derived phenol and cyclopentanol. Chemical Engineering Science, 207, 441–447. https://doi.org/10.1016/j.ces.2019.06.050
No, R. A. N. P., & Dou, D. E. (2009). Ranp 5 - 2009. 12.
Olcay H, Malina R, Upadhye AA, Hileman JI, Huber GW, B. S. (2018). Technoeconomic and environmental evaluation of producing chemicals and drop-in aviation biofuels via aqueous phase processing. Energy & Environmental Science. https://doi.org/https:// doi.org/10.1039/C7EE03557H
Oliveira, L. E., Giordani, D. S., Paiva, E. M., De Castro, H. F., & Da Silva, M. L. C. P. (2013). Kinetic and thermodynamic parameters of volatilization of biodiesel from babassu, palm oil and mineral diesel by thermogravimetric analysis (TG). Journal of Thermal Analysis and Calorimetry, 111(1), 155–160. https://doi.org/10.1007/s10973-011-2163-8
processamento-materias-primas-2019 (1). (n.d.).
Ranucci, C. R., Alves, H. J., Monteiro, M. R., Kugelmeier, C. L., Bariccatti, R. A., Rodrigues de Oliveira, C., & Antônio da Silva, E. (2018). Potential alternative aviation fuel from jatropha (Jatropha curcas L.), babassu (Orbignya phalerata) and palm kernel (Elaeis guineensis) as blends with Jet-A1 kerosene. Journal of Cleaner Production, 185, 860–869. https://doi.org/10.1016/j.jclepro.2018.03.084
Reimer, J., & Zheng, X. (2016). Economic analysis of an aviation bioenergy supply chain. December. https://doi.org/10.1016/j.rser.2016.12.036
Rodrigues, J. D. A., Cardoso, F. D. P., Lachter, E. R., Estevão, L. R. M., Lima, E., & Nascimento, R. S. V. (2006). Correlating chemical structure and physical properties of vegetable oil esters. JAOCS, Journal of the American Oil Chemists’ Society, 83(4), 353–357. https://doi.org/10.1007/s11746-006-1212-0
Rodrigues Ranucci, C., José Alves, H., da Silva, C., Roberto Monteiro, M., Andressa dos Santos, K., Aparecido Bariccatti, R., & Antonio da Silva, E. (2014). OBTENÇÃO DE BIOQUEROSENE DE PINHÃO-MANSO (JatrophacurcasL.) e suas misturas ao querosene fóssil obtaining biokerosene of jatropha (jatrophacurcasl.) and their mixtures to fossil kerosene. In Revista Tecnológica-Edição Especial.
Santos, J. R. De J; SOUZA, A. G. De; SILVA, F. C. (2008). BIODIESEL DE BABAÇU : Avaliação Térmica , Oxidativa e Misturas Binárias.
Santos, N. A., Tavares, M. L. A., Rosenhaim, R., Silva, F. C., Fernandes, V. J., Santos, I. M. G., & Souza, A. G. (2007). Thermogravimetric and calorimetric evaluation of babassu biodiesel obtained by the methanol route. Journal of Thermal Analysis and Calorimetry, 87(3), 649–652. https://doi.org/10.1007/s10973-006-7765-1
Schäfer, A. W., & Waitz, I. A. (2014). Air transportation and the environment. Transport Policy, 1–4. https://doi.org/10.1016/j.tranpol.2014.02.012
Silva, M. C. D., Da Silva, L. M., Santos, N. A., Conceição, M. M., Souza, A. G., & Dos Santos, A. O. (2011). Study of ethylic Babassu biodiesel properties at low temperatures. Journal of Thermal Analysis and Calorimetry, 106(2), 363–367. https://doi.org/10.1007/s10973-011-1474-0
Simões, A. F., & Schaeffer, R. (2005). The Brazilian air transportation sector in the context of global climate change: CO 2 emissions and mitigation alternatives. Energy Conversion and Management, 46(4), 501–513. https://doi.org/10.1016/j.enconman.2004.06.017
Verma, P., & Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063–1071. https://doi.org/10.1016/j.rser.2016.04.054
Wang, W. C., & Tao, L. (2016). Bio-jet fuel conversion technologies. Renewable and Sustainable Energy Reviews, 53, 801–822. https://doi.org/10.1016/j.rser.2015.09.016
Wilson, G. R., Edwards, T., Corporan, E., & Freerks, R. L. (2013). Certification of alternative aviation fuels and blend components. Energy and Fuels, 27(2), 962–966. https://doi.org/10.1021/ef301888b
Yang, J., Xin, Z., He, Q. (Sophia), Corscadden, K., & Niu, H. (2019). An overview on performance characteristics of bio-jet fuels. In Fuel (Vol. 237, pp. 916–936). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2018.10.079
Yilmaz, N., & Atmanli, A. (2017). Sustainable alternative fuels in aviation. Energy, 140, 1378–1386. https://doi.org/10.1016/j.energy.2017.07.077
Yilmaz, N., & Morton, B. (2011). Comparative characteristics of compression ignited engines operating on biodiesel produced from waste vegetable oil. Biomass and Bioenergy, 35(5), 2194–2199. https://doi.org/10.1016/j.biombioe.2011.02.032
Zalla, O., Neto, S., Gonçalves, D., Bergara, S. D. F., Augusto, E., Batista, C., José, A., & Meirelles, D. A. (2019). Oil extraction from semi-defatted babassu bagasse with ethanol: Liquid-liquid equilibrium and solid-liquid extraction in a single stage. Journal of Food Engineering, 109845. https://doi.org/10.1016/j.jfoodeng.2019.109845
Zhang, C., Hui, X., Lin, Y., & Sung, C. J. (2016). Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 54, 120–138. https://doi.org/10.1016/j.rser.2015.09.056
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Julio Cezar Girardi; Reinaldo Aparecido Bariccatti ; Samuel Nelson Melegari de Souza ; Camila Zeni do Amaral; Carmen Luisa Barbosa Guedes ; Jonathan Baumi ; Caroline Milani Bertosse
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.