Corteza del rambután: Una fuente no convencionale de lignina y sus posibles aplicaciones en la ciencia de los polímeros

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.25320

Palabras clave:

Lignina; Rambután; Nephelium lappaceum; Polímero; Aditivo.

Resumen

El objetivo de este trabajo fue evaluar las propiedades de la lignina soda obtenida de un residuo abundante y no convencionale - la corteza de rambután - ya que la lignina se ha presentado como la fuente más importante de materia orgánica alternativa al petróleo para ser utilizada en la ciencia de los polímeros. Las medidas del pH y FTIR han confirmado el carácter ácido de esta lignina, soluble en distintos disolventes y polaridad, lo que facilita su adición a matrices poliméricas. Si bien la capacidad de absorción de luz ultravioleta fue mayor en comparación con la lignina comercial probada como referencia, la morfología y la distribución del tamaño fueron menos regulares. Cuando se agrega a una película de almidón, la lignina disminuye su afinidad natural por el agua, mejorando tanto sus propiedades de barrera como su resistencia térmica. Los microorganismos se desarrollan fácilmente en películas de este tipo que contienen lignina de rambután. Aunque los reportes de sus aplicaciones tecnológicas sean muy raros, esa lignina tiene potencial como componente o aditivo en matrices poliméricas.

Citas

Ahmad, M.A. & Alrozi, R. (2011). Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 171, 510-6.

American Society for Testing and Materials (2005). Annual book of ASTM Standards. Method E96/E96M-05. Philadelphia.

Baumberger, S., Monties, B. & Valle, G.D. (1998). Use of kraft lignin as filler for starch films. Polym. Degrad. Stabil. 59, 213-211.

Baurhooa, B., Ruiz-Feriab, C.A. & Zhaoa, X. (2008). Purified lignin: nutritional and health impact on farm animals – A review. Anim. Feed Sci. Tech. 144, 175–184.

Beninca, C., Demiate, M., Lacerda, L.G., Carvalho Filho, M.A.S., Ionashiro, M. & Schnitzler, E. (2008). Thermal behavior of corn starch granules modified by acid treatment at 30 and 50 °C. Eclet. Quim. 33, 13-8.

Bhat, R., Abdullah, N., Din, R.H. & Tay, G.-S. (2013). Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J. Food Eng. 119, 707–713.

Biermann, C.J. (1996). Handbook of pulping and papermaking. Academic Press, 723.

Botros, S.H., Eid, M.A.M. & Nageeb, Z.A. (2005). Thermal stability and dielectric relaxation of NR/soda lignin and NR/thiolignin composites. Egypt. J. Solids 28, 67-83.

Brunow, G. (2005). Methods to reveal the structure of lignin. Biopolymers 1, 89-99.

d’Almeida, J.R.M., Aquino, R.C M.P. & Monteiro, S.N. (2006). Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Compos. Part A-Appl. S. 37, 1473–1479.

Evstigneev, E.I. (2011). Factors affecting lignin solubility. Russ. J. Appl. Chem+ 84, 1040–5.

Fengel, D. & Wegener, G. (2003). Lignin – polysaccharide complexes. In: Wood: Chemistry, Ultrastructure, Reactions. Verlag Kessel, 613.

Gusman, J.A. & Tsai, P. (2015). Extraction of antioxidants compounds from rambutan (Nephelium lappaceum L.) peel as agricultural waste in Taiwan. J. of Tropical Crop. Sci. 2, 10-6.

Iffland, K., Sherwood, J., Carus, M., Raschka, A., Farmer, T. & Clark, J. (2015). Definition, calculation and comparison of the “Biomass Utilization Efficiency (BUE)” of various bio-based chemicals, polymers and fuels. Hürth, 8, 1-26.

InnProBio (2017). Sustainability of bio-based products. <http://innprobio.innovation-procurement.org/fileadmin/user_upload/Factsheets/Factsheet_n_2.pdf>, 2, 1-4. Last access 03/06/2017.

Kneževića, A., Milovanovića, I., Stajića, M., Lončarb, N., Brčeskib, I., Vukojevića, J. & Ćilerdžića, J. (2013). Lignin degradation by selected fungal species. Bioresour. Technol. 138, 117-123.

Jablonský, M., Kocis, J., Haz, A. & Šima, J. (2015). Characterization and comparison by UV spectroscopy of precipitated lignins and commercial lignosulfonates. Cell. Chem. Technol. 49, 267-274.

Lahimera, M.C., Ayeda, N., Horricheb, J. & Belgaied, S. (2017). Characterization of plastic packaging additives: Food contact, stability and toxicity. Arab. J. Chem. 10, S1938-S1954.

Lee, R.A., Bédard, C., Berberi, V., Beauchet, R. & Lavoie, J.M. (2013). UV-Vis as quantification tool for solubilized lignin following a single-shot steam process. Bioresour. Technol. 144, 658-663.

Lemon, H.W. (1947). The effect of alkali on the ultraviolet absorption spectra of hydroxyaldehydes, hydroxyketones and other phenolic compounds. J. Am. Chem. Soc. 69, 2998-0.

Lestari, S.R., Djati, M.S., Rudijanto, A. & Fatchiyah, F. (2014). The physiological response of obese rat model with rambutan peel extract treatment. Asian Pac. J. Trop. Dis. 4, 780-5.

Li, Z. & Ge, Y. (2011). Extraction of lignin from sugar cane bagasse and its modification into a high performance dispersant for pesticide formulations. J. Braz. Chem. Soc. 22, 1866-1871.

Markgraaff, J. (1999). Overview of new developments in composite materials for industrial and mining applications. J. South Afr. Inst. Min. Metall. 96, 55-65.

Miranda, C.S., Ferreira, M.S., Magalhães, M.T., Gonçalves, A.P.B., Oliveira, J.C., Guimarães, D.H. & José, N.M. (2015). Starch-based films plasticized with glycerol and lignin from piassava fiber reinforced with nanocrystals from eucalyptus. Mater. Today-Proc. 2, 134-0.

Mousavioun, P. & Doherty, W.O.S. (2010). Chemical and thermal properties of fractionated bagasse soda lignin. Ind. Crops Prod. 31, 52-8.

Nadif, A., Hunkeler, D. & Käuper, P. (2002). Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives. Bioresource Technol. 84, 49-55.

Nassar, M.M. & MacKay, G.D.M. (1984). Mechanism of thermal decomposition of lignin, Wood Fiber Sci. 16, 441-453.

Naz, S., Devtare, S., Satapathy, S. & Gupta, S. (2015). Study of ligninolytic bacteria isolation and characterization from Dhamdha agro field of Bhilaidurg region. IJRET 4, 258-262.

Nitz, H., Semke, H. & Mülhaupt, R. (2011). Influence of lignin type on the Mechanical Properties of lignin based compounds. Macromol. Mater. Eng. 286, 737-743.

Oliveira, T.M.; Soares, N.F.; Paula, C.D. & Viana, G.A. (2008). Active packaging use to inhibit enzymatic browning of apples. Semina: Ciências Agrárias, Londrina, 29, 1, 117-128.

Oliveira, E.I.S., Santos, J.B., Gonçalves, A.P.B., Mattedi, S. & José, N.M. (2016). Characterization of the rambutan peel fiber (Nephelium lappaceum) as a lignocellulosic material for technological applications. Chem. Engineer. Trans. 50, 391-6.

Petersen, K., Nielsen, P.V., Bertelsen, G., Lawther, M., Olsen, M.B., Nilssonk, N.H. & Mortenseny, G. (1999). Potential of biobased materials for food packaging. Trends Food Sci. Tech. 10, 58-62.

Pua, F., Fang, Z., Zakaria, S., Guo, F. & Chia, C. (2011). Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnol. Biofuels 4, 1-8.

Sakakibara, A. (1980). A structural model of softwood lignin. Wood Sci. Technol. 14, 89-100.

Saliba, E.O.S., Rodriguez, N.M., Morais, S.A.L. & Piló-Veloso, D. (2011). Ligninas – métodos de obtenção e caracterização química. Cienc. Rural 31, 917-928.

Schorra, D., Dioufa, P.N. & Stevanovica, T. (2014). Evaluation of industrial lignins for biocomposites production. Ind. Crops Prod. 52, 65–73.

Silva, R., Haraguchi, S.K., Muniz, E.C. & Rubira, A.F. (2009). Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Quim. Nova 32, 661-671.

Sirisompong, W., Jirapakkul, W. & Klinkesorn, U. (2011). Response surface optimization and characteristics of rambutan (Nephelium lappaceum L.) kernel fat by hexane extraction. LWT-Food Sci. Technol. 44, 1946-1951.

Shah, A.A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 26, 246–265.

Snyder, L.R. (1974). Classification of the solvent properties of common liquids. J. Chromatogr. 92, 223-0.

Stewart, D. (2008). Lignin as a base material for materials applications: Chemistry, application and economics. Ind. Crops Prod. 27, 202–7.

Sun, Y., Xu, J., Xu, F., Sun, R. & Jones, G.L. (2014). Dissolution, regeneration and characterization of formic acid and Alcell lignin in ionic liquid-based systems. RSC Adv. 4, 2743–2755.

Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiol. 153, 895–905.

Vishtal, A. & Kraslawski, A. (2011). Challenges in industrial application of technical lignins. Bioresources 6, 3547-3568.

Wang, H., Tucker, M. & Ji, Y. (2013). Recent development in chemical depolymerization of lignin: a review. J. Appl. Chem. 2013, 1-9.

Wua, R.L., Wanga, X.L., Lia, F., Lia, H.Z. & Wanga, Y.Z. (2009). Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour. Technol. 100, 2569-2574.

Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L. & Weckhuysen, B.M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599.

Zhu, H., Li, Y., Pettersson, B., Zhang, L., Lindström, M. & Henriksson, G. (2014). Technical soda lignin dissolved in urea as an environmental friendly binder in wood fiberboard. J. Adhes. Sci. Technol. 28, 490-8.

Descargas

Publicado

13/01/2022

Cómo citar

OLIVEIRA, E. I. da S. .; SANTOS, J. B. .; MATTEDI, S.; JOSÉ, N. M. . Corteza del rambután: Una fuente no convencionale de lignina y sus posibles aplicaciones en la ciencia de los polímeros. Research, Society and Development, [S. l.], v. 11, n. 1, p. e49911125320, 2022. DOI: 10.33448/rsd-v11i1.25320. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25320. Acesso em: 27 sep. 2024.

Número

Sección

Ciencias Exactas y de la Tierra